Previous |  Up |  Next


monad; Kleisli category; weakly normal functor; inclusion hyperspace; superextension
The problem of extension of normal functors to the Kleisli categories of the inclusion hyperspace monad and its submonads is considered. Some negative results are obtained.
[1] Eilenberg S., Moore J.S.: Adjoint functors and triples, III. J. Math. 9 (1965), 381-398. MR 0184984
[2] Zarichnyi M.M.: On covariant topological functors, I. Q&A in General Topology 8 (1990), 317-369. MR 1065284 | Zbl 0707.54010
[3] Vinárek J.: Projective monads and extensions of functors. Math. Centr. Afd. 195 (1983), 1-12. MR 0733105
[4] Radul T.: The inclusion hyperspace monad and its algebra (in Russian). Ukr. Mat. J. 42.6 (1990), 806-811. MR 1071155
[5] van Mill J.: Superextensions and Wallman spaces. MCTracts, Amsterdam, 1977.
[6] Shchepin E.V.: Functors and countable powers of compacta (in Russian). Uspekhi Mat. Nauk 36 (1981), 3-62. MR 0622720
[7] Zarichnyi M.M., Teleiko A.B.: Semigroups and monads (in Ukrainian). preprint.
[8] Zarichnyi M.M.: Profinite multiplicativity of functors and characterization of projective monads on category compacta (in Russian). Ukr. Mat. J. 42.9 (1990), 1271-1275. MR 1093642
[9] Fedorchuk V.V.: Covariant functors in the category of compacta, absolute retracts and $Q$-manifolds (in Russian). Uspekhi Mat. Nauk 36 (1981), 177-195. MR 0622724
[10] Zarichnyi M.M.: Characterization $G$-symmetric power functor and extensions of functors to the Kleisli categories (in Russian). Matem. Zametki 5 (1992), 42-48. MR 1201947
[11] Zarichnyi M.M.: Topology of Functors and Monads in the Category of Compacta (in Ukrainian). Institute of Research in Education, Kiev, 1993.
Partner of
EuDML logo