Previous |  Up |  Next


conformal connection; development
Conformally flat metric $\bar g$ is said to be Ricci superosculating with $g$ at the point $x_0$ if $g_{ij}(x_0)=\bar g_{ij}(x_0)$, $\Gamma _{ij}^k(x_0)=\bar \Gamma _{ij}^k(x_0)$, $R_{ij}^k(x_0)=\bar R_{ij}^k(x_0)$, where $R_{ij}$ is the Ricci tensor. In this paper the following theorem is proved: \medskip {\sl If $\,\gamma $ is a smooth curve of the Riemannian manifold $M$ {\rm (}without self-crossing{\rm (}, then there is a neighbourhood of $\,\gamma $ and a conformally flat metric $\bar g$ which is the Ricci superosculating with $g$ along the curve $\gamma $.\/}
[1] Cartan E.: Leçons sur la Géometrie des Espaces de Riemann. Gauthier-Villars, Paris (1928), 242. MR 0020842
[2] Cartan E.: Les espaces à connection conforme. Ann. Soc. Po. Math. (1923), 2 171-221.
[3] Slavskii V.V.: Conformal development of the curve on the Riemannian manifold in the Minkowski space. Siberian Math. Journal 37 3 (1996), 676-699. MR 1434711
[4] Akivis M.A., Konnov V.V.: Sense local aspects of the theory of conformal structure. Russian Math. Surveys (1993), 48 3-40. MR 1227946
[5] Slavskii V.V.: Conformally flat metrics and the geometry of the pseudo-Euclidean space. Siberian Math. Jour. (1994), 35 3 674-682. MR 1292228
[6] Besse A.L.: Einstein Manifolds. Erg. Math. Grenzgeb. 10, Berlin-Heidelberg-New York (1987). MR 0867684 | Zbl 0613.53001
[7] Reshetnyak Yu.G.: On the lifting of the non-regular path in the bundle manifold and its applications. Siberian Math. Jour. (1975), 16 3 588-598.
[8] Gray A., Vonhecke L.: The volumes of tubes about curves in a Riemannian manifold. Proc. London Math. Soc. (1982), 44 2 215-243. MR 0647431
Partner of
EuDML logo