Previous |  Up |  Next


Young measures; generalizations; relative $L^1$-weak compactness; coercive optimization problems; nonconcentration of energy
The Young measures, used widely for relaxation of various optimization problems, can be naturally understood as certain functionals on suitable space of integrands, which allows readily various generalizations. The paper is focused on such functionals which can be attained by sequences whose ``energy'' (=$p$th power) does not concentrate in the sense that it is relatively weakly compact in $L^1(\Omega )$. Straightforward applications to coercive optimization problems are briefly outlined.
[1] Acerbi E., Fusco N.: Semicontinuity problems in the calculus of variations. Archive Rat. Mech. Anal. 86 (1984), 125-145. MR 0751305 | Zbl 0565.49010
[2] Ball J.M.: A version of the fundamental theorem for Young measures. in: PDEs and Continuum Models of Phase Transition (Eds. M. Rascle, D. Serre, M. Slemrod), Lecture Notes in Physics 344, Springer, Berlin, 1989, pp.207-215. MR 1036070 | Zbl 0991.49500
[3] Ball J.M., Murat F.: Remarks on Chacon's biting lemma. Proc. Amer. Math. Soc. 107 (1989), 655-663. MR 0984807 | Zbl 0678.46023
[4] Berliocchi H., Lasry J.-M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973), 129-184. MR 0344980 | Zbl 0282.49041
[5] Brooks J.K., Chacon R.V.: Continuity and compactness of measures. Adv. in Math. 37 (1980), 16-26. MR 0585896 | Zbl 0463.28003
[6] Buttazzo G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Res. Notes in Math. 207, Longmann, Harlow, 1989. MR 1020296 | Zbl 0669.49005
[7] DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Physics 108 (1987), 667-689. MR 0877643 | Zbl 0626.35059
[8] Dunford N., Pettis J.T.: Linear operators on summable functions. Trans. Amer. Math. Soc. 47 (1940), 323-392. MR 0002020
[9] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992), 1-19. MR 1145159 | Zbl 0757.49014
[10] Kristensen J: Lower semicontinuity of variational integrals. Ph.D. Thesis, Math. Inst., Tech. Univ. of Denmark, Lungby, 1994.
[11] Kružík M., Roubíček T.: Explicit characterization of $L^p$-Young measures. J. Math. Anal. Appl. 198 (1996), 830-843. MR 1377827
[12] Kružík M., Roubíček T.: On the measures of DiPerna and Majda. Mathematica Bohemica, in print.
[13] Roubíček T.: Convex compactifications and special extensions of optimization problems. Nonlinear Analysis, Th., Methods, Appl. 16 (1991), 1117-1126. MR 1111622
[14] Roubíček T.: Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin, 1996, in print. MR 1458067
[15] Roubíček T., Hoffmann K.-H: Theory of convex local compactifications with applications to Lebesgue spaces. Nonlinear Analysis, Th., Methods, Appl. 25 (1995), 607-628. MR 1338806
[16] Tartar L.: Compensated compactness and applications to partial differential equations. in: Nonlinear Analysis and Mechanics (R.J. Knops, ed.), Heriott-Watt Symposium IV, Pitman Res. Notes in Math. 39, San Francisco, 1979. MR 0584398 | Zbl 0437.35004
[17] Valadier M.: Young measures. in: Methods of Nonconvex Analysis (A. Cellina, ed.), Lecture Notes in Math. 1446, Springer, Berlin, 1990, pp.152-188. MR 1079763 | Zbl 1067.28001
[18] Warga J.: Variational problems with unbounded controls. SIAM J. Control 3 (1965), 424-438. MR 0194951 | Zbl 0201.47803
[19] Young L.C: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212-234. Zbl 0019.21901
[20] Young L.C.: Generalized surfaces in the calculus of variations. Ann. Math. 43 (1942), part I: 84-103, part II: 530-544. MR 0006023 | Zbl 0063.09081
Partner of
EuDML logo