Previous |  Up |  Next


Schrodinger operator; generalized eigenfunctions; generalized Fourier transforms; Paley-Wiener theorems
In this paper we define and study generalized Fourier transforms associated with some class of Schrodinger operators on $\Bbb R$. Next, we establish Paley-Wiener type theorems which characterize some functional spaces by their generalized Fourier transforms.
[1] Agranovich Z.S., Marchenko V.A.: Inverse problem of scattering theory (in Russian). K.G.U. Karkov, 1960.
[2] Colin de Verdiere Y.: La matrice de scattering pour l'operateur de Schrodinger sur la droite réelle. Séminaire N. Bourbaki, 32e anné, Exposé no. 557, Juin 1980, p. 557-01 à 557-11.
[3] Faddeev L.D.: Inverse problem of quantum scattering theory. J. Soviet Math. 5 (1976), 335-395. Zbl 0373.35014
[4] Faraut J.: Décomposition spectrale de l'opérateur de Schrodinger et matrice de diffusion. Séminaire d'analyse harmonique de Tunis, Exposé no. 20, Juin 1979.
[5] Pogorzelski W.: Integral Equation and their Application. first edition, vol. 1, pp. 8-13, Pergamon Press, 1966. MR 0201934
[6] Titchmarch E.C.: Eigenfunction Expansion Associated with the Second Order Differential Equations. Oxford-Clarendon Press, 1948.
Partner of
EuDML logo