Previous |  Up |  Next


lattice points; exponential sums
In this article we consider the number $R_{k,p}(x)$ of lattice points in $p$-dimensional super spheres with even power $k \ge 4$. We give an asymptotic expansion of the $d$-fold anti-derivative of $R_{k,p}(x)$ for sufficiently large $d$. From this we deduce a new estimation for the error term in the asymptotic representation of $R_{k,p}(x)$ for $p<k<2p-4$.
[1] Copson E.T.: Asymptotic Expansions. Cambridge University Press, Cambridge, 1965. MR 0168979 | Zbl 1096.41001
[2] Hoeppner S., Krätzel E.: The number of lattice points inside and on the surface $|t_1|^k+|t_2|^k+\ldots +|t_n|^k=x$. Math. Nachr. 163 (1993), 257-268. MR 1235070
[3] Krätzel E.: Lattice Points. DVW, Berlin, 1988 and Kluwer, Dordrecht-Boston-London, 1988. MR 0998378
[4] Kuba G.: On the sums of two k-th powers of numbers in residue classes II. Abh. Math. Sem. Hamburg 63 (1993), 87-95. MR 1227866
[5] Müller W., Nowak W.G.: Lattice points in planar domains: Applications of Huxley's Discrete Hardy-Littlewood-Method, Numbertheoretic analysis. Vienna 1988-1989, Springer Lecture Notes 1452 (eds. E. Hlawka and R.F. Tichy) (1990), pp.139-164.
[6] Schmidt-Röh R.: Ein additives Gitterpunktproblem. Doctoral Thesis, FSU Jena, 1989.
[7] Schnabel L.: Über eine Verallgemeinerung des Kreisproblems. Wiss. Z. FSU Jena, Math.-Naturwiss. R. 31 (1982), 667-681. MR 0682557 | Zbl 0497.10038
[8] Wild R.E.: On the number of lattice points in $x^t+y^t=n^{t/2}$. Pacific J. Math. 8 (1958), 929-940. MR 0112883
Partner of
EuDML logo