[1] Baston R.J.: 
Almost Hermitian symmetric manifolds, I: Local twistor theory, II: Differential invariants. Duke Math. J. 63 (1991), 81-111, 113-138. 
MR 1106939 
[2] Baston R.J., Eastwood M.G.: 
Penrose Transform; Its Interaction with Representation Theory. Clarendon Press, Oxford, 1989. 
MR 1038279 | 
Zbl 0726.58004 
[3] Bernstein I.N., Gelfand I.M., Gelfand S.I.: 
Structure of representations generated vectors of highest weight. Funct. Anal. Appl. 5 (1971), 1-8. 
MR 0291204 
[4] Bernstein I.N., Gelfand I.M., Gelfand S.I.: 
Differential operators on the base affine space and a study of $\frak g$-modules. in ``Lie Groups and their Representations'' (ed. I.M. Gelfand) Adam Hilger, 1975, pp.21-64. 
MR 0578996 
[5] Branson T., Ólafsson G., Ørsted B.: 
Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup. J. Funct. Anal. 135 (1996), 163-205. 
MR 1367629 
[6] Bureš J.: 
Special invariant operators I. Comment. Math. Univ. Carolinae 37.1 (1996), 179-198. 
MR 1396170 
[7] Čap A.: 
Translation of natural operators on manifolds with AHS-structures. Archivum Math. (Brno) 32.4 (1996), 249-266, electronically available at www.emis.de. 
MR 1441397 
[8] Čap A., Schichl H.: 
Parabolic Geometries and Canonical Cartan Connections. preprint ESI 450, electronically available at www.esi.ac.at. 
MR 1795487 
[9] Čap A., Slovák J., Souček V.: 
Invariant operators on manifolds with almost Hermitian symmetric structures, I. Invariant differentiation. Acta Math. Univ. Commenianae 66 (1997), 33-69, electronically available at www.emis.de. 
MR 1474550 
[10] Čap A., Slovák J., Souček V.: 
Invariant operators on manifolds with almost Hermitian symmetric structures, II. Normal Cartan connections, Acta Math. Univ. Commenianae. 66 (1997), 203-220, electronically available at www.emis.de. 
MR 1620484 
[11] Čap, A., Slovák J., Souček V.: 
Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard Operators. ESI Preprint 613, to appear in J. Differential Geom. Appl., electronically available at www.esi.ac.at. 
MR 1757020 | 
Zbl 0969.53004 
[12] Eastwood M.G.: On the weights of conformally invariant operators. Twistor Newsl. 24 (1987), 20-23.
[13] Eastwood M.G., Slovák J.: 
Semi-holonomic Verma modules. J. Algebra 197 (1997), 424-448. 
MR 1483772 
[14] Fegan H.D.: 
Conformally invariant first order differential operators. Quart. J. Math. 27 (1976), 371-378. 
MR 0482879 | 
Zbl 0334.58016 
[15] Fulton W., Harris J.: 
Representation Theory - A First Course. Springer-Verlag (GTM), 1991. 
MR 1153249 | 
Zbl 0744.22001 
[16] Garland H., Lepowsky J.: 
Lie Algebra Homology and the Macdonald-Kac Formulae. Inv. Math. 34, Springer, 1976. 
MR 0414645 
[17] Gindikin S.G.: 
Generalized conformal structures. Twistors in Mathematics and Physics, LMS Lecture Notes 156, Cambridge Univ. Press, 1990, pp.36-52. 
MR 1089908 | 
Zbl 0788.22008 
[18] Goncharov A.B.: 
Generalized conformal structures on manifolds. Selecta Math. Soviet. 6 (1987), 308-340. 
MR 0925263 | 
Zbl 0632.53038 
[19] Humphreys J.E.: 
Introduction to Lie Algebras and Representation Theory. Springer-Verlag, 1972. 
MR 0323842 | 
Zbl 0447.17002 
[20] Jakobsen H.P.: 
Conformal invariants. Publ. RIMS, Kyoto Univ. 22 (1986), 345-361. 
MR 0849262 
[23] Kobayashi S., Nagano T.: 
On filtered Lie algebras and geometric structures I. J. Math. Mech. 13 (1964), 875-907. 
MR 0168704 | 
Zbl 0142.19504 
[24] Kolář I., Michor P.W., Slovák J.: 
Natural Operations in Differential Geometry. Springer, 1993. 
MR 1202431 
[25] Lepowsky J.: 
A generalization of the Bernstein-Gelfand-Gelfand resolution. J. Algebra 49 (1977), 496-511. 
MR 0476813 | 
Zbl 0381.17006 
[26] Sharpe R.W.: 
Differential Geometry. Graduate Texts in Mathematics 166, Springer-Verlag, 1997. 
MR 1453120 | 
Zbl 0876.53001 
[27] Slovák J.: 
On the geometry of almost Hermitian symmetric structures. in Proceedings of the Conference Differential Geometry and Applications, 1995, Brno, Masaryk University, Brno (1996), pp.191-206, electronically available at www.emis.de. 
MR 1406338 
[28] Slovák J.: Parabolic geometries. Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.
[29] Verma D.N.: 
Structure of certain induced representations of complex semisimple Lie algebras. Bull. Amer. Math. Soc. 74 (1968), 160-166. 
MR 0218417 | 
Zbl 0157.07604 
[30] Wünsch V.: 
On conformally invariant differential operators. Math. Nachr. 129 (1986), 269-281. 
MR 0864639