Previous |  Up |  Next


maximal functions; spaces of homogeneous type
Given a rotation invariant measure in $\Bbb R^n$, we define the maximal operator over circular sectors. We prove that it is of strong type $(p,p)$ for $p>1$ and we give necessary and sufficient conditions on the measure for the weak type $(1,1)$ inequality. Actually we work in a more general setting containing the above and other situations.
[1] Sjögren P.: A remark on the maximal functions for measures in $\Bbb R^n$. Amer. J. Math. 105 (1983), 1231-1233. MR 0714775
[2] Coifman R., Weiss G.: Analyse harmonique non-commutative sur certains espaces homogènes, étude de certaines intégrales singulières. Lectures Notes in Math., Vol 242, Springer-Verlag, 1971. MR 0499948 | Zbl 0224.43006
[3] Pólya G., Szegö G.: Problems and Theorems in Analysis. Volume I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[4] de Guzmán M.: Real Variable Methods in Fourier Analysis. North Holland, Amsterdam, 1981. MR 0596037
[5] Macías R., Segovia C.: Lipschitz functions on spaces of homogeneous type. Advances in Mathematics 33 (1979), 257-270. MR 0546295
[6] Aimar H., Harboure E., Iaffei B.: Extensions of a theorem of Stein and Zygmund. preprint.
Partner of
EuDML logo