Previous |  Up |  Next


Penrose transform; conformally invariant operators
It is shown that operators occurring in the classical Penrose transform are differential. These operators are identified depending on line bundles over the twistor space.
Baston R.J., Eastwood M.G.: The Penrose Transform and its Interaction with Representation Theory. Oxford University Press (1989). MR 1038279
Buchdahl N.P.: On the relative de Rham sequence. Proc. Amer. Math. Soc. 87 (1983), 363-366. MR 0681850 | Zbl 0511.58001
Eastwood M.G.: A duality for homogeneous bundles on twistor space. J. London Math. Soc. 31 (1985), 349-356. MR 0809956 | Zbl 0534.14008
Griffiths P., Harris J.: Principles of Algebraic Geometry. A Wiley-Intescience Publication (1978). MR 0507725 | Zbl 0408.14001
Gunning R.C., Rossi H.: Analytic Functions of Several Complex Variables. Prentice-Hall (1965). MR 0180696 | Zbl 0141.08601
Rocha-Cardini A.: Splitting criteria for $\mathfrak g$-modules induced from parabolic and the Bernstain-Gelfand-Gelfand resolution of a finite dimensional, irreducible $\mathfrak g$-module. Trans. Amer. Math. Soc. (1980), 262 335-361. MR 0586721
Slovák J.: Natural operators on conformal manifolds. Dissertation (1994), Masaryk University Brno. MR 1255551
Ward R.S., Wells R.O.: Twistor Geometry and Field Theory. Cambridge University Press (1983). MR 1054377
Partner of
EuDML logo