Previous |  Up |  Next


semiparallel submanifolds; flat normal connection; semisymmetric Riemannian manifolds; manifolds of conullity two
By means of the bundle of orthonormal frames adapted to the submanifold as in the title an explicit exposition is given for these submanifolds. Two theorems give a full description of the semisymmetric Riemannian manifolds which can be immersed as such submanifolds. A conjecture is verified for this case that among manifolds of conullity two only the planar type (in the sense of Kowalski) is possible.
[B] Boeckx E.: Foliated semi-symmetric spaces. Doctoral Thesis, Katholic Univ. Leuven, 1995. Zbl 0846.53031
[BKV] Boeckx E., Kowalski O., Vanhecke L.: Riemannian Manifolds of Conullity Two. World Scientific, London, 1996. MR 1462887 | Zbl 0904.53006
[BO] Bishop R.L., O'Neill B.: Manifolds of negative curvature. Trans. Amer. Math. Soc. 145 (1969), 1-49. MR 0251664 | Zbl 0191.52002
[D] Deprez J.: Semi-parallel surfaces in Euclidean space. J. Geom. 25 (1985), 192-200. MR 0821680 | Zbl 0582.53042
[DN] Dillen F., Nölker S.: Semi-parallelity, multi-rotation surfaces and the helix-property. J. Reine Angew. Math. 435 (1993), 33-63. MR 1203910
[F1] Ferus D.: Immersionen mit paralleler zweiter Fundamentalform. Manuscripta Math. 12 (1974), 153-162. MR 0339015 | Zbl 0274.53058
[F2] Ferus D.: Immersions with parallel second fundamental form. Math. Z. 140 (1974), 87-93. MR 0370437 | Zbl 0279.53048
[F3] Ferus D.: Symmetric submanifolds of Euclidean space. Math. Ann. 247 (1980), 81-93. MR 0565140 | Zbl 0446.53041
[KN] Kobayashi S., Nomizu K.: Foundations of Differential Geometry. vol. II, Interscience Publ., New York et al., 1969. MR 0238225 | Zbl 0526.53001
[K] Kowalski O.: An explicit classification of $3$-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czech. Math. J. 46 (121) (1996), 427-474; preprint 1991, presented at the Geometry Meeting in Oberwolfach, October 1991. MR 1408298 | Zbl 0879.53014
[L1] Lumiste Ü.: Decomposition and classification theorems for semi-symmetric immersions. Proc. Estonian Acad. Sci. Phys. Math. 36 (1987), 414-417. MR 0925980 | Zbl 0646.53003
[L2] Lumiste Ü.: Semi-symmetric submanifold as the second order envelope of symmetric submanifolds. Proc. Estonian Acad. Sci. Phys. Math. 39 (1990), 1-8. MR 1059755 | Zbl 0704.53017
[L3] Lumiste Ü.: Irreducible normally flat semi-symmetric submanifolds, I and II. Izv. Vyssh. Uchebn. Zaved. Mat., no. 8 (1990), 45-53 and no.9 (1990), 32-40 (in Russian); English transl.: Soviet Math. (Iz. VUZ) 34(8) (1990), 50-59 and 34(9) (1990), 35-47. MR 1087938
[L4] Lumiste Ü.: Semi-symmetric submanifolds. Problems in Geometry, Vol. 23, Acad. Sci. USSR, Allunion Inst. Scient. Techn. Inform., Moscow, 1991, pp.3-28 (in Russian); English transl.: J. Math. Sci. New York 70(2) (1994), 1609-1623. Zbl 0763.53023
[L5] Lumiste Ü.: Semi-symmetric envelopes of some symmetric cylindrical submanifolds. Proc. Estonian Acad. Sci. Phys. Math. 40 (1991), 245-257. MR 1163442 | Zbl 0802.53014
[L6] Lumiste Ü.: Submanifolds with parallel fundamental form. in: F.J.E. Dillen and L.C.A. Verstraelen (Eds.): Handbook of Differential Geometry, vol. I, Elsevier Sc., Amsterdam, 2000, pp.779-864 (Chapter 7). MR 1736858 | Zbl 0964.53002
[L7] Lumiste Ü.: Semiparallel isometric immersions of $3$-dimensional semisymmetric Riemannian manifolds. Czech. Math. J., to appear. MR 2000064 | Zbl 1080.53036
[L8] Lumiste Ü.: Semiparallel submanifolds with plane generators of codimension two in a Euclidean space. Proc. Estonian Acad. Sci. Phys. Math. 50 (2001), 115-123. MR 1864980 | Zbl 1004.53004
[L9] Lumiste Ü.: University of Tartu and geometry of the 19-th century. in: Teaduse Ajaloo Lehekülgi Eestist, Vol. 2, Valgus, Tallinn, 1976, pp.36-68, (in Estonian, Summaries in Russian and German); English transl. in: V. Abramov, M. Rahula, and K. Riives (Eds.): Ülo Lumiste: {Mathematician}, Estonian Math. Soc., Tartu, 1999, pp.68-102. MR 1723392
[MC] McCleary J.: Geometry from a Differentiable Viewpoint. Cambridge Univ. Press, Cambridge, 1994. MR 1314819 | Zbl 0828.53001
[N] Nut J.J. (Nuut, J.): Lobachevskian Geometry in Analytic Treatment. Publ. Acad. Sci. USSR, Moscow, 1961 (in Russian).
[Ph] Phillips E.: Karl M. Peterson: The earliest derivation of the Mainardi-Codazzi equations and the fundamental theorem of surface theory. Historia Math. 6 (1979), 137-163. MR 0530623 | Zbl 0405.01024
[S1] Sinjukov N.S.: Equidistant Riemannian manifolds. Annual Reports of the Odessa University, 1957, pp.133-135 (in Russian).
[S2] Sinjukov N.S.: Geodesic Maps of Riemannian Spaces. Publishing House ``Nauka", Moscow, 1979 (in Russian). MR 0552022
[St] Sternberg S.: Lectures on Differential Geometry. Prentice-Hall, Englewood Cliffs, NJ 1964; 2nd ed. Chelsea Publishing, New York, 1983. MR 0891190 | Zbl 0518.53001
[Str] Strübing W.: Symmetric submanifolds of Riemannian manifolds. Math. Ann. 245 (1979), 37-44. MR 0552577
[Sz] Szabó Z.I.: Structure theorems on Riemannian spaces satisfying $R(X.Y)\cdot R=0$, I. The local version. J. Differential Geom. 17 (1982), 531-582. MR 0683165
[T] Takeuchi M.: Parallel submanifolds of space forms. Manifolds and Lie Groups. Papers in honour of Y. Matsushima, Birkhäuser, Basel, 1981, pp.429-447. MR 0642871 | Zbl 0481.53047
[W] Wolf J.A.: Spaces of Constant Curvature. Univ. of California, Berkeley, 1972; 4th ed. Publish or Perish, Berkeley, 1977. MR 0343213 | Zbl 0556.53033
Partner of
EuDML logo