Previous |  Up |  Next


loops; gyrogroups; gyrovector spaces; hyperbolic geometry; Einstein addition; Möbius transformation
Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops, admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in turn, form the setting for hyperbolic geometry just as vector spaces form the setting for Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space is the velocity of the center of momentum of three massive objects with equal masses located at the triangle vertices. Employing gyrovector space techniques we find in this article that, in full analogy, the centroid of a hyperbolic triangle in relativity velocity space is the velocity of the center of momentum of three massive objects with equal rest masses located at the triangle vertices. Being guided by the relativistic mass correction of moving massive objects in special relativity theory, we express the hyperbolic triangle centroid in terms of the triangle vertices, resulting in a novel hyperbolic triangle centroid identity that captures remarkable analogies with its Euclidean counterpart.
[1] Ahlfors L.V.: Möbius transformations in several dimensions. Univ. of Minnesota School of Mathematics, Minneapolis, Minnesota, 1981. MR 0725161 | Zbl 0663.30001
[2] Bottema O.: On the medians of a triangle in hyperbolic geometry. Canad. J. Math. 10 502-506 (1958). MR 0100247 | Zbl 0084.37403
[3] Chen J.-L., Ungar A.A.: The Bloch gyrovector. Found. Phys. 32 4 531-565 (2002). MR 1903786
[4] Csörgö P.: H-connected transversals to abelian subgroups. preprint.
[5] Einstein A.: Zur Elektrodynamik Bewegter Körper [On the electrodynamics of moving bodies]. Ann. Physik (Leipzig) 17 891-921 (1905).
[6] Einstein A.: Einstein's Miraculous Years: Five Papers that Changed the Face of Physics. Princeton, Princeton, NJ, 1998. Edited and introduced by John Stachel. Includes bibliographical references. Einstein's dissertation on the determination of molecular dimensions - Einstein on Brownian motion - Einstein on the theory of relativity - Einstein's early work on the quantum hypothesis. A new English translation of Einstein's 1905 paper on pp.123-160.
[7] Fock V.: The Theory of Space, Time and Gravitation. The Macmillan Co., New York, 1964. Second revised edition. Translated from the Russian by N. Kemmer. A Pergamon Press Book. MR 0162586 | Zbl 0112.43804
[8] Foguel T., Ungar A.A.: Involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3 (1) 27-46 (2000). MR 1736515 | Zbl 0944.20053
[9] Foguel T., Ungar A.A.: Gyrogroups and the decomposition of groups into twisted subgroups and subgroups. Pacific J. Math. 197:1 1-11 (2001). MR 1810204 | Zbl 1066.20068
[10] Foguel T., Kinyon M.K., Phillip J.D.: On twisted subgroups and Bol loops of odd order. Rocky Mountain J. Math., in print. MR 2228190
[11] Hausner M.: A Vector Space Approach to Geometry. Dover Publications Inc., Mineola, NY, 1998. Reprint of the 1965 original. MR 1651732 | Zbl 0924.51001
[12] Kiechle H.: Theory of $K$-loops. Springer-Verlag, Berlin, 2002. MR 1899153 | Zbl 0997.20059
[13] Kinyon M.K., Ungar A.A.: The gyro-structure of the complex unit disk. Math. Mag. 73:4 273-284 (2000). MR 1822756
[14] Kuznetsov E.: Transversals in loops. preprint.
[15] Lévay P.: The geometry of entanglement: metrics, connections and the geometric phase. arXiv:quant-ph/0306115 v1 2003. MR 2044194
[16] Lévay P.: Mixed state geometric phase from Thomas rotations. arXiv:quant-ph/0312023 v1 2003.
[17] Ratcliffe J.G.: Foundations of hyperbolic manifolds. vol. 149 of {Graduate Texts in Mathematics}, Springer-Verlag, New York, 1994. MR 1299730 | Zbl 1106.51009
[18] Sabinin L.V., Sabinina L.L., Sbitneva L.V.: On the notion of gyrogroup. Aequationes Math. 56 (1-2) 11-17 (1998). MR 1628291 | Zbl 0923.20051
[19] Sexl R.U., Urbantke H.K.: Relativity, Groups, Particles. Springer-Verlag, Vienna, 2001. Special relativity and relativistic symmetry in field and particle physics; revised and translated from the third German (1992) edition by Urbantke. MR 1798479 | Zbl 1057.83001
[20] Ungar A.A.: The relativistic noncommutative nonassociative group of velocities and the Thomas rotation. Resultate Math. 16 (1-2) (1989), 168-179. The term ``K-loop'' is coined here. MR 1020224 | Zbl 0693.20067
[21] Ungar A.A.: Extension of the unit disk gyrogroup into the unit ball of any real inner product space. J. Math. Anal. Appl. 202:3 1040-1057 (1996). MR 1408366 | Zbl 0865.20055
[22] Ungar A.A.: The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry. Amer. Math. Monthly 106:8 759-763 (1999). MR 1718602 | Zbl 1004.51025
[23] Ungar A.A.: Beyond the Einstein addition law and its gyroscopic Thomas precession. volume 117 of {Fundamental Theories of Physics}, Kluwer Academic Publishers Group, Dordrecht, 2001. The theory of gyrogroups and gyrovector spaces. MR 1978122 | Zbl 0972.83002
[24] Ungar A.A.: The hyperbolic geometric structure of the density matrix for mixed state qubits. Found. Phys. 32 11 1671-1699 (2002). MR 1954912
[25] Ungar A.A.: On the unification of hyperbolic and Euclidean geometry. Complex Variables Theory Appl. 49 (2004), 197-213. MR 2046396 | Zbl 1068.30038
[26] Ungar A.A.: Einstein's special relativity: Unleashing the power of its hyperbolic geometry. preprint, 2004. MR 2187176 | Zbl 1071.83505
Partner of
EuDML logo