Previous |  Up |  Next


serial modules; direct sum decomposition
A module is called uniserial if it has totally ordered submodules in inclusion. We describe direct summands of $U^{(I)}$ for a uniserial module $U$. It appears that any such a summand is isomorphic to a direct sum of copies of at most two uniserial modules.
[1] Bass H.: Big projective modules are free. Illinois J. Math. 7 (1963), 24-31. MR 0143789 | Zbl 0115.26003
[2] Dung N.V., Facchini A.: Direct sum decompositions of serial modules. J. Pure Appl. Algebra 133 (1998), 93-106. MR 1653699
[3] Facchini A.: Module Theory; Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules. Birkhäuser, Basel, 1998. MR 1634015 | Zbl 0930.16001
[4] Příhoda P.: On uniserial modules that are not quasi-small. J. Algebra, to appear. MR 2225779
[5] Příhoda P.: A version of the weak Krull-Schmidt theorem for infinite families of uniserial modules. Comm. Algebra, to appear. MR 2224888
Partner of
EuDML logo