Previous |  Up |  Next


Hölder space; tightness; weak convergence
We consider a sequence of stochastic processes $(X_n(\bold t), \bold t\in [0,1]^m)$ with continuous trajectories and we show conditions for the tightness of the sequence in the Hölder space with a parameter $\gamma$.
Billingsley P.: Convergence of Probability Measures. Wiley, New York. MR 1700749 | Zbl 0944.60003
Ledoux M., Talagrand M.: Probability in Banach Spaces. Springer, New York. Zbl 0748.60004
Lamperti J.: On convergence of stochastic processes. Trans. Amer. Math. Soc. 104 430-435. MR 0143245 | Zbl 0113.33502
Hamadouche D.: Invariance principles in Hölder spaces. Portugal. Math. 57 127-153. MR 1759810 | Zbl 0965.60011
Kerkyacharian G., Roynette B.: Une démonstration simple des théorèmes de Kolmogorov, Donsker et Ito-Nisio. C.R. Acad. Sci. Paris Sér. Math. I 312 877-882. MR 1108512 | Zbl 0764.60008
Račkauskas A., Suquet C.: Random fields and central limit theorem in some generalized Hölder spaces. Proceedings of the 7th international Vilnius conference, pp.599-616.
Račkauskas A., Suquet C.: Invariance principles for adaptive self-normalized partial sums processes. Stochastic Process. Appl. 95 63-81. MR 1847092
Račkauskas A., Suquet C.: Central limit theorems in Hölder topologies for Banach space valued random fields. Theory Probab. Appl. 49 1 77-92. MR 2141332
Partner of
EuDML logo