Previous |  Up |  Next


We give a complete characterization of tribes with respect to the Łukasiewicz $t$-norm, i. e., of systems of fuzzy sets which are closed with respect to the complement of fuzzy sets and with respect to countably many applications of the Łukasiewicz $t$-norm. We also characterize all operations with respect to which all such tribes are closed. This generalizes the characterizations obtained so far for other fundamental $t$-norms, e. g., for the product $t$-norm.
[BK] Butnariu, D., Klement, E.P.: Triangular norm-based measures and games with fuzzy coalitions. Kluwer, Dordrecht, 1993.
[F] Frank, M.J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226. DOI 10.1007/BF02189866 | MR 0556722 | Zbl 0444.39003
[K] Klement, E.P.: Construction of fuzzy $\sigma $-algebras using triangular norms. J. Math. Anal Appl. 85 (1982), 543–565. DOI 10.1016/0022-247X(82)90015-4 | MR 0649189 | Zbl 0491.28003
[M:semi] Mesiar, R.: Fundamental triangular norm based tribes and measures. J. Math. Anal. Appl. 177 (1993), 633–640. DOI 10.1006/jmaa.1993.1283 | MR 1231507 | Zbl 0816.28014
[M] Mesiar, R.: On the structure of $T_s$-tribes. Tatra Mountains Math. Publ. 3 (1993), 167–172. MR 1278531
[MN] Mesiar, R., Navara, M.: $T_s$-tribes and $T_s$-measures. J. Math. Anal. Appl (to appear). MR 1397888
[N] Navara, M.: A characterization of triangular norm based tribes. Tatra Mountains Math Publ. 3 (1993), 161–166. MR 1278530 | Zbl 0799.28013
[Pykacz] Pykacz, J.: Fuzzy set ideas in quantum logics. Int. J. Theor. Physics 31 (1992), 1765–1781. DOI 10.1007/BF00671785 | MR 1183522 | Zbl 0789.03049
[SS] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York, 1983. MR 0790314
Partner of
EuDML logo