Article
Keywords:
Korteweg-de Vries equation; attractor; unbounded domain.
Summary:
We investigate the long-time behaviour of solutions to the Korteweg-de Vries equation with a zero order dissipation and an additional forcing term, when the space variable varies over $R$, and prove that it is described by a maximal compact attractor in $H^2(R)$.
References:
                        
[Al] E.A.  Alarcón: 
Existence and finite dimensionality of the global attractor for a class of nonlinear dissipative equations. Proc. Roy. Soc. Edinburgh 123A (1993), 893–916. 
MR 1249693[BV] A.V.  Babin, M.I. Vishik: 
Attractors of partial differential evolution equations in an unbounded domain. Proc. Roy. Soc. Edinburgh 116A (1990), 221–243. 
MR 1084733[Ba] J.  Ball: 
A proof of the existence of global attractors for damped semilinear wave equations. (to appear). 
MR 2026182[BSm] J.L.  Bona, R.  Smith: 
The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London 278A (1975), 555–604. 
DOI 10.1098/rsta.1975.0035 | 
MR 0385355[Fe] E.  Feireisl: 
Bounded, locally compact global attractors for semilinear damped wave equations on $R^N$. Diff. Integral Eq. 9 (1996), 1147–1156. 
MR 1392099[GT] J.M.  Ghidaglia, R.  Temam: 
Attractors for damped nonlinear hyperbolic equations. J. Math. Pures Appl. 66 (1987), 273–319. 
MR 0913856[Ha] J.K.  Hale: 
Asymptotic Behavior of Dissipative Systems. Math. Surveys and Monographs 25, Amer. Math. Soc., Providence, R.I., 1988. 
MR 0941371 | 
Zbl 0642.58013[MGK] R.M.  Miura, C.S.  Gardner, M.D.  Kruskal: 
Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968), 1204–1209. 
DOI 10.1063/1.1664701 | 
MR 0252826