Previous |  Up |  Next


almost periodic function
It is not the purpose of this paper to construct approximations but to establish a class of almost periodic functions which can be approximated, with an arbitrarily prescribed accuracy, by continuous periodic functions uniformly on ${\mathbb R} = (-\infty ; +\infty )$.
[1] Amerio, L. – Prouse, G.: Almost Periodic Functions and Functional Equations. N.Y. Van Nostrand Reihold Company, 1971. MR 0275061
[2] Bohr, H.: Zur Theorie der fastperiodischen Funktionen, I, II, III Teil. 1925.
[3] Coppel, W. A.: Almost periodic properties of ordinary differential equations. Ann. Mat. Pura Appl. 76 (1963). MR 0221024
[4] Levitan, B. M.: Almost Periodic Functions. G.I.T.L. Moscow, 1953. (Russian) MR 0060629
[5] Levitan, B. M. – Zikov, V. V.: Almost Periodic Functions and Differential Equations. I. M. U. Moscow, 1978. () MR 0509035
Partner of
EuDML logo