Previous |  Up |  Next


ordinary differential equations; linear differential equations; transformations; functional equations
The paper describes the general form of an ordinary differential equation of the order $n+1$ $(n\ge 1)$ which allows a nontrivial global transformation consisting of the change of the independent variable. A result given by J. Aczél is generalized. A functional equation of the form \[ f\biggl (s, v, w_{11}v_{1}, \ldots , \sum _{j=1}^{n}w_{nj}v_{j}\biggr ) = \sum _{j=1}^{n}w_{n+1 j}v_{j} + w_{n+1 n+1}f(x, v, v_{1}, \ldots , v_{n}), \] where $ w_{ij} = a_{ij}(x_{1}, \ldots , x_{i-j+1}) $ are given functions, $ w_{n+1 1} = g(x, x_{1}, \ldots , x_{n})$, is solved on $\mathbb R.$
[n1] J. Aczél: Lectures on Functional Equations and Their Applications. Academic Press, New York, 1966. MR 0208210
[n2] J. Aczél: Über Zusammenhänge zwischen Differential- und Funktionalgleichungen. Jahresber. Deutsch. Math.-Verein. 71 (1969), 55–57. MR 0256014
[n3] O. Borůvka: Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971. MR 0463539
[n4] A. Moór, L. Pintér: Untersuchungen Über den Zusammenhang von Differential- und Funktionalgleichungen. Publ. Math. Debrecen 13 (1966), 207–223. MR 0206445
[n5] F. Neuman: Global Properties of Linear Ordinary Differential Equations. Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London, 1991. MR 1192133 | Zbl 0784.34009
[n6] J. Posluszny, L. A. Rubel: The motion of an ordinary differential equation. J. Differential Equations 34 (1979), 291–302. DOI 10.1016/0022-0396(79)90011-1 | MR 0550047
[n7] V. Tryhuk: Remark to transformations of linear differential and functional-differential equations. Czechoslovak Math. J. 50 (125) (2000), 265–278. DOI 10.1023/A:1022414717364 | MR 1761386
Partner of
EuDML logo