Previous |  Up |  Next


Hausdorff space; Urysohn space; completely Hausdorff space; filter of dense sets
We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than $c$ has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight $c$ which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of $\pi$-weight less than $\mathfrak p$ has a dense completely Hausdorff (and hence Urysohn) subspace. We show that there exists a Tychonoff space without dense normal subspaces and give other examples of spaces without “good” dense subsets.
[A] A. V. Arhangel’skii: Structure and classification of topological spaces and cardinal invariants. Uspekhi Mat. Nauk 33 (1978), 29–84. (Russian) MR 0526012
[A1] A. V. Arhangel’skii: Continuous mappings, factorization theorems, and function spaces. Trudy Moskov. Mat. Obshch. 47 (1984), 3–21. (Russian) MR 0774944
[ATTW] O. T. Alas, M. G. Tkačenko, V. V. Tkachuk and R. G. Wilson: Connectifying some spaces. Topology Appl. 71 (1996), 203–215. DOI 10.1016/0166-8641(95)00012-7 | MR 1397942
[B] R. H. Bing: A countable connected Hausdorff space. Proc. Amer. Math. Soc. 4 (1953), 474. DOI 10.1090/S0002-9939-1953-0060806-9 | MR 0060806
[vD] E. van Douwen: The integers and topology. Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North Holland P.C., 1984, pp. 111–167. MR 0776622 | Zbl 0561.54004
[E] R. Engelking: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0373.54002
[M1] V. I. Malykhin: A Fréchet-Urysohn compact space without points of countable character. Mat. Zametky 41 (1987), 365–376. (Russian) MR 0893365
[M2] V. I. Malykhin: On dense subspaces of topological spaces. General Topology—Mappings of Topological Spaces; Proceedings of the Moscow Seminar on General Topology, Moscow Univ. P.H., Moscow, 1986, pp. 65–76. (Russian) MR 1080759
[Na] I. Namioka: Separate continuity and joint continuity. Pacific J. Math. 51 (1974), 515–531. DOI 10.2140/pjm.1974.51.515 | MR 0370466 | Zbl 0294.54010
[No] N. Noble: The continuity of functions on Cartesian products. Trans. Amer. Math. Soc. 149 (1970), 187–198. DOI 10.1090/S0002-9947-1970-0257987-5 | MR 0257987 | Zbl 0229.54028
[RE] E. A. Reznichenko: A pseudocompact space in which only the subsets of complete power can be non-closed. Vestnik Mosk. Univ., Ser. Matem., Mech. 6 (1989), 69–70. MR 1065983
[RO] P. Roy: A countable connected Urysohn space with a dispersion point. Duke Math. J. 33 (1966), 331–333. DOI 10.1215/S0012-7094-66-03337-0 | MR 0196701 | Zbl 0147.22804
[T] M. G. Tkačenko: On a property of compact spaces. Proceedings of the Moscow Seminar on General Topology, Moscow University P. H., Moscow, 1981, pp. .
Partner of
EuDML logo