Previous |  Up |  Next


inflations of algebras; retracts of algebras; unary algebras
This paper introduces the notion of a strong retract of an algebra and then focuses on strong retracts of unary algebras. We characterize subuniverses of a unary algebra which are carriers of its strong retracts. This characterization enables us to describe the poset of strong retracts of a unary algebra under inclusion. Since this poset is not necessarily a lattice, we give a necessary and sufficient condition for the poset to be a lattice, as well as the full description of the poset.
[baris] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York, 1981. MR 0648287
[riv3] D. Duffus and I. Rival: A structure theory for ordered sets. Discrete Math. 35 (1981), 53–118. DOI 10.1016/0012-365X(81)90201-6 | MR 0620665
[eva] E. Graczynska: EIS for nilpotent shifts of varieties. General Algebra & Applications (Research & Exposition in Math. vol. 20), K. Denecke, H.-J. Vogel (eds.), Heldermann Verlag, Berlin, 1993, pp. 116–120. MR 1209891 | Zbl 0796.08008
[halk] K. Halkowska: On some operators defined on equational classes of algebras. Arch. Math. 12 (1976), 209–212. MR 0432510
[jak1] D. Jakubíková-Studenovská: Retract irreducibility of connected monounary algebras I. Czechoslovak Math. J. 46 (121) (1996, 291–308). MR 1388617
[jak2] D. Jakubíková-Studenovská: Retract irreducibility of connected monounary algebras II. Czechoslovak Math. J. 47 (1997), 113–126. DOI 10.1023/A:1022448406768 | MR 1435610
[jak3] D. Jakubíková-Studenovská: Retract varieties of monounary algebras. Czechoslovak Math. J. 47 (122) (1997), 701–716. DOI 10.1023/A:1022874703156 | MR 1479314
[jak4] D. Jakubíková-Studenovská: Two types of retract irreducibility of connected monounary algebras. Math. Bohem. (121) (1996), 143–150. MR 1400606
[jak5] D. Jakubíková-Studenovská: Antiatomic retract varieties of monounary algebras. Czechoslovak Math. J. 48 (1998), 793–808. DOI 10.1023/A:1022452009553 | MR 1658198
[mel] I. I. Mel’nik: Nilpotent shifts of varieties. Mat. Zametki 14 (1973), no. 5, 703–712. (Russian) MR 0366782
[riv2] R. Nowakowski and I. Rival: The smallest graph variety containing all paths. Discrete Math. 43 (1983), 223–234. DOI 10.1016/0012-365X(83)90159-0 | MR 0685630
[past] F. J. Pastijn: Constructions of varieties that satisfy the amalgamation property or the congruence extension property. Studia Sci. Math. Hungar. 17 (1982), 101–111. MR 0761528 | Zbl 0608.08004
[plo] J. Plonka: On the subdirect product of some equational classes of algebras. Math. Nachr. 63 (1974), 303–305. DOI 10.1002/mana.3210630126 | MR 0360414 | Zbl 0289.08002
[riv1] I. Rival and R. Wille: The smallest order variety containing all chains. Discrete Math. 35 (1981), 203–212. DOI 10.1016/0012-365X(81)90209-0 | MR 0620673
[tasa] V. Tasić: Some special identities. manuscript (1988), 1–10.
[viver] N. Weaver: Classes closed under isomorphisms, retractions and products. Algebra Universalis 30 (1993), 140–148. DOI 10.1007/BF01196555 | MR 1211036 | Zbl 0785.08007
Partner of
EuDML logo