Previous |  Up |  Next


lattice-ordered groups; $f$-rings; Specker groups
In this article, it will be shown that every $\ell $-subgroup of a Specker $\ell $-group has singular elements and that the class of $\ell $-groups that are $\ell $-subgroups of Specker $\ell $-group form a torsion class. Methods of adjoining units and bases to Specker $\ell $-groups are then studied with respect to the generalized Boolean algebra of singular elements, as is the strongly projectable hull of a Specker $\ell $-group.
[1] P. F. Conrad: The hulls of representable $\ell $-groups and $f$-rings. J.  Austral. Math. Soc. 16 (1973), 385–415. DOI 10.1017/S1446788700015391 | MR 0344173
[2] P. F. Conrad: Epi-archimedean $\ell $-groups. Czechoslovak Math.  J. 24 (1974), 192–218. MR 0347701
[3] P. F. Conrad: The hulls of semiprime rings. Czechoslovak Math. J. 28 (1978), 59–86. MR 0463223 | Zbl 0419.16002
[4] P. F. Conrad and M. R.  Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575–598. DOI 10.1090/S0002-9947-1992-1031238-0 | MR 1031238
[5] P. F. Conrad and M. R.  Darnel: Countably valued lattice-ordered groups. Algebra Universalis 36 (1996), 81–107. DOI 10.1007/BF01192710 | MR 1397569
[6] P. F. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. MR 1644504
[7] P. F. Conrad and J. Martinez: Signatures and $S$-discrete lattice-ordered groups. Algebra Universalis 29 (1992), 521–545. DOI 10.1007/BF01190779 | MR 1201177
[8] P. F. Conrad and D.  McAlister: The completion of a $\ell $-group. J.  Austral. Math. Soc. 9 (1969), 182–208. DOI 10.1017/S1446788700005760 | MR 0249340
[9] M. R. Darnel: The Theory of Lattice-ordered Groups. Marcel Dekker, , 1995. MR 1304052
[10] M. R. Darnel, M.  Giraudet and S. H.  McCleary: Uniqueness of the group operation on the lattice of order-automorphisms of the real line. Algebra Universalis 33 (1995), 419–427. DOI 10.1007/BF01190709 | MR 1322783
[11] W. C. Holland: Partial orders of the group of automorphisms of the real line. Proc. International Conf. on Algebra, Part  1 (Novosibirsk, 1989), pp.  197–207. MR 1175773 | Zbl 0766.06015
[12] J. Jakubík: Lattice-ordered groups with unique addition must be archimedean. Czechoslovak Math.  J. 41(116) (1991), 559–603. MR 1117808
[13] S. Lin: Some Theorems on Lattice-ordered Groups. Dissertation, University of Kansas, 1991.
[14] C. Nobeling: Verallgemeinerung eines Satzes von Herrn E. Specker. Invent. Math. 6 (1968), 41–55. DOI 10.1007/BF01389832 | MR 0231907
[15] S. Wolfenstein: Contribution à l’étude des groupes reticulés: Extensions archimédiennes, Groupes à valeurs normales. Thesis, Sci. Math. Paris, 1970.
Partner of
EuDML logo