Previous |  Up |  Next


Kolmogorov equations; invatiant measures; $m$-dissipativity
Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
[1] S.  Cerrai: A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994), 349–367. DOI 10.1007/BF02573496 | MR 1293091 | Zbl 0817.47048
[2] S. Cerrai: Weakly continuous semigroups in the space of functions with polynomial growth. Dynam. Systems Appl. 4 (1995), 351–371. MR 1348505 | Zbl 0830.47032
[3] S.  Cerrai and F. Gozzi: Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential Integral Equations (1995), 465–486. MR 1306569
[4] G. Da Prato and L. Tubaro: Self-adjointness of some infinite dimensional elliptic operators and application to stochastic quantization. Probab. Theory Relat. Fields 118 (2000), 131–145. DOI 10.1007/PL00008739 | MR 1785456
[5] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge, 1996. MR 1417491
[6] A. Eberle: Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics Vol. 1718. Springer-Verlag, Berlin, 1999. MR 1734956
[7] B.  Goldys and M. Kocan: Diffusion semigroups in spaces of continuous functions with mixed topology. J. Differential Equations 173 (2001), 17–39. DOI 10.1006/jdeq.2000.3918 | MR 1836243
[8] V. Liskevich and M. Röckner: Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization. Ann. Scuola Norm. Sup. Pisa Cl. Sci.  (4) 27 (1999), 69–91. MR 1658889
[9] Z. M. Ma and M. Röckner: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer-Verlag, Berlin, 1992. MR 1214375
[10] E.  Priola: $\pi $-semigroups and applications. Preprint No.  9 of the Scuola Normale Superiore di Pisa. 1998.
Partner of
EuDML logo