Previous |  Up |  Next


stochastic integration; fractional Brownian motion; $p$-variation; vortex filaments; statistical fluid mechanics
A model of vortex filaments based on stochastic processes is presented. In contrast to previous models based on semimartingales, here processes with fractal properties between $1/2$ and $1$ are used, which include fractional Brownian motion and similar non-Gaussian examples. Stochastic integration for these processes is employed to give a meaning to the kinetic energy.
[1] E.  Alòs and D.  Nualart: Stochastic calculus with respect to the fractional Brownian motion. Preprint.
[2] E.  Alòs, O.  Mazet and D.  Nualart: Stochastic calculus with respect to Gaussian processes. (to appear). MR 1849177
[3] J.  Bell and D.  Marcus: Vorticity intensification and the transition to turbulence in the three-dimensional Euler equation. Comm. Math. Phys. 147 (1992), 371–394. DOI 10.1007/BF02096593 | MR 1174419
[4] J.  Bertoin: Sur une integrale pour les processus à $\alpha $-variatione bornée. Ann. Probab. 17 (1989), 1521–1535. DOI 10.1214/aop/1176991171 | MR 1048943
[5] H.  Bessaih: Mean field theory for 3-D vortex filaments. In preparation.
[6] E.  Bolthausen: On the construction of the three dimensional polymer measure. Probab. Theory Related Fields 97 (1993), 81–101. DOI 10.1007/BF01199313 | MR 1240717 | Zbl 0794.60104
[7] A.  Chorin: Vorticity and Turbulence. Springer-Verlag, New York, 1994. MR 1281384 | Zbl 0795.76002
[8] A.  Colesanti and M.  Romito: Some remarks on a probabilistic model of the vorticity field of a 3D fluid. Preprint.
[9] F.  Flandoli: On a probabilistic description of small scale structures in 3D fluids. (to appear). MR 1899111 | Zbl 1017.76074
[10] F. Flandoli and M.  Gubinelli: The Gibbs ensamble of a vortex filament. (to appear). MR 1892850
[11] U.  Frisch: Turbulence. Cambridge University Press, Cambridge, 1995. MR 1428905 | Zbl 0832.76001
[12] G.  Gallavotti: Foundations of Fluid Mechanics. Quaderni FM2000–5,
[13] A. N.  Kolmogorov: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. (Dokl.) Acad. Sci. USSR (N.S.) 30 (1941), 299–303. MR 1124922
[14] N. S.  Landkof: Foundations of Modern Potential Theory. Springer-Verlag, New York, 1972. MR 0350027 | Zbl 0253.31001
[15] P. L.  Lions and A.  Majda: Equilibrium statistical theory for nearly parallel vortex filaments. Comm. Pure Appl. Math. 53 (2000), 76–142. DOI 10.1002/(SICI)1097-0312(200001)53:1<76::AID-CPA2>3.0.CO;2-L | MR 1715529
[16] C.  Marchioro, M.  Pulvirenti: Mathematical Theory of Incompressible Nonviscous Fluids. Springer-Verlag, Berlin, 1994. MR 1245492
[17] I.  Minelli: In preparation.
[18] D.  Nualart, C.  Rovira and S.  Tindel: Probabilistic models for vortex filaments based on fractional Brownian motion. In preparation.
[19] L.  Onsager: Statistical hydrodynamics. Nuovo Cimento (9) 6 (1949), Supplemento no. 2, 279–287. DOI 10.1007/BF02780991 | MR 0036116
[20] Z. S.  She, E.  Jackson and S. A.  Orszag: Structure and dynamics of homogeneous turbulence: models and simulations. Proc. Roy. Soc. Lond. Ser. A 434 (1991), 101–124. DOI 10.1098/rspa.1991.0083
[21] B.  Toth and W.  Werner: The true self-repelling motion. Probab. Theory Relat. Fields 111 (1998), 375–452. DOI 10.1007/s004400050172 | MR 1640799
[22] A.  Vincent and M.  Meneguzzi: The spatial structure and statistical properties of homogeneous turbulence. J.  Fluid Mech. 225 (1991), 1–25. DOI 10.1017/S0022112091001957
[23] J.  Westwater: On Edwards model for long polymer chains. Comm. Math. Phys. 72 (1980), 131–174. DOI 10.1007/BF01197632 | MR 0573702 | Zbl 0431.60100
[24] L. C.  Young: An inequality of Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936), 251–282. DOI 10.1007/BF02401743 | MR 1555421
[25] M.  Zähle: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 (1998), 333–374. DOI 10.1007/s004400050171 | MR 1640795
Partner of
EuDML logo