Previous |  Up |  Next


derived projective limit functor; Retakh’s condition; weakly acyclic (LF)-spaces
We investigate the problem when the strong dual of a projective limit of (LB)-spaces coincides with the inductive limit of the strong duals. It is well-known that the answer is affirmative for spectra of Banach spaces if the projective limit is a quasinormable Fréchet space. In that case, the spectrum satisfies a certain condition which is called “strong P-type”. We provide an example which shows that strong P-type in general does not imply that the strong dual of the projective limit is the inductive limit of the strong duals, but on the other hand we show that this is indeed true if one deals with projective spectra of retractive (LB)-spaces. Finally, we apply our results to a question of Grothendieck about biduals of (LF)-spaces.
[1] K. D.Bierstedt and J.  Bonet: Biduality in (LF)-spaces. Preprint 1998. MR 1902422
[2] J. Bonet and S.  Dierolf: A note on the biduals of strict (LF)-spaces. Results Math. 13 (1988), 23–32. DOI 10.1007/BF03323393 | MR 0928138
[3] J. Bonet and S. Dierolf: On distinguished Fréchet spaces. In: Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 201–214. MR 1150747
[4] J. Bonet and P.  Domański: Real analytic curves in Fréchet spaces and their duals. Monatshefte Math. 126 (1998), 13–36. DOI 10.1007/BF01312453 | MR 1633255
[5] R. W. Braun, R. Meise and D.  Vogt: Applications of the projective limit functor to convolutions and partial differential equations. In: Advances in the Theory of Fréchet Spaces, T. Terzioǧlu (ed.), Kluwer, NATO ASF Ser.  C, Vol. 287, Dordrecht, 1989, pp. 29–46. MR 1083556
[6] R. W. Braun and D.  Vogt: A sufficient condition for $\mathop {\mathrm Proj}^1$ = 0. Michigan Math. J. 44 (1996), 149–156. MR 1439674
[7] S. Dierolf, L. Frerick, E.  Mangino and J. Wengenroth: Examples on projective spectra of (LB)-spaces. Manuscripta Math. 88 (1995), 171–175. DOI 10.1007/BF02567814 | MR 1354103
[8] L. Frerick and J.  Wengenroth: A sufficient condition for vanishing of the derived projective limit functor. Archiv Math. (Basel) 67 (1996), 296–301. DOI 10.1007/BF01197593 | MR 1407332
[9] A. Grothendieck: Sur les espace  (F) et  (DF). Summa Brasil. Math. 3 (1954), 57–122. MR 0075542
[10] H. Komatsu: Ultradistributions I. Structure theorems and a characterization. J.  Fac. Sci. Univ. Tokio 20 (1973), 25–105. MR 0320743 | Zbl 0258.46039
[11] R.  Meise and D.  Vogt: Introduction to Functional Analysis. Clavendon Press, Oxford, 1997. MR 1483073
[12] V. P.  Palamodov: The projective limit functor in the category of linear topological spaces. Mat. Sbornik 75 (1968), 567–603. (Russian) MR 0223851 | Zbl 0175.41801
[13] V. P. Palamodov: Homological methods in the theory of locally convex spaces. Uspekhi Mat. Nauk 26 (1971), 3–65. (Russian) MR 0293365 | Zbl 0247.46070
[14] P.  Pérez Carreras and J. Bonet: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies, Vol. 131, 1987. MR 0880207
[15] D.  Vogt: On the functors $\mathop {\mathrm Ext}^1(E,F)$ for Fréchet spaces. Studia Math. 85 (1987), 163–197. MR 0887320
[16] D.  Vogt: Lectures on projective spectra of (DF)-spaces. Seminar lectures, AG Funktionalanalysis Düsseldorf/Wuppertal (1987).
[17] D.  Vogt: Topics on projective spectra of (LB)-spaces. In: Advances in the Theory of Fréchet Spaces, T.  Terzioǧlu (ed.), Kluwer, NATO ASF Ser. C, Vol. 287, Dordrecht, 1989, pp. 11–27. MR 1083555 | Zbl 0711.46006
[18] D.  Vogt: Regularity properties of (LF)-spaces. In: Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 57–84. MR 1150738 | Zbl 0779.46005
[19] J. Wengenroth: Acyclic inductive spectra of Fréchet spaces. Studia Math. 120 (1996), 247–258. MR 1410451 | Zbl 0863.46002
[20] J. Wengenroth: A new characterization of $\mathop {\mathrm Proj}^1 {\mathcal X}=0$ for countable spectra of (LB)-spaces. Proc. Amer. Math. Soc. 127 (1999), 737–744. DOI 10.1090/S0002-9939-99-04559-1 | MR 1468208
Partner of
EuDML logo