Previous |  Up |  Next

Article

Keywords:
Specker lattice ordered group; generalized Boolean algebra; torsion class
Summary:
In this paper we investigate the relations between torsion classes of Specker lattice ordered groups and torsion classes of generalized Boolean algebras.
References:
[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. MR 0227053 | Zbl 0153.02501
[2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[3] P. Conrad and M. R. Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575–598. DOI 10.1090/S0002-9947-1992-1031238-0 | MR 1031238
[4] P. F. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. DOI 10.1023/A:1006075129584 | MR 1644504
[5] P. F. Conrad and M. R. Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J 51 (2001), 395–413. DOI 10.1023/A:1013759300701 | MR 1844319
[6] P. F. Conrad and D. McAlister: The completion of an $\ell $-group. J. Austral. Math. Soc. 9 (1969), 182–208. MR 0249340
[7] P. F. Conrad and J. Martinez: Signatures and $S$-discrete lattice ordered groups. Algebra Universalis 29 (1992), 521–545. DOI 10.1007/BF01190779 | MR 1201177
[8] C. Gofman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107–120. MR 0097331
[9] J. Jakubík: Cardinal properties of lattice ordered groups. Fund. Math. 74 (1972), 85–98. MR 0302528
[10] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 21, Academic Press, New York-London, 1977, pp. 451–477. MR 0491397
[11] J. Jakubík: Radical classes of generalized Boolean algebras. Czechoslovak Math. J. 48 (1998), 253–268. DOI 10.1023/A:1022885303504 | MR 1624315
[12] J. Jakubík: Radical classes of complete lattice ordered groups. Math. Slovaca 49 (1999), 417–424. MR 1719676
[13] J. Martinez: Torsion theory for lattice ordered groups. Czechoslovak Math. J. 25 (1975), 284–299. MR 0389705 | Zbl 0321.06020
Partner of
EuDML logo