Previous |  Up |  Next


Pettis; McShane; PU and Henstock integrals; variational integrals; multipliers
Some relationships between the vector valued Henstock and McShane integrals are investigated. An integral for vector valued functions, defined by means of partitions of the unity (the PU-integral) is studied. In particular it is shown that a vector valued function is McShane integrable if and only if it is both Pettis and PU-integrable. Convergence theorems for the Henstock variational and the PU integrals are stated. The families of multipliers for the Henstock and the Henstock variational integrals of vector valued functions are characterized.
[1] B.  Bongiorno: Relatively weakly compact sets in the Denjoy space. J. Math. Study 27 (1994), 37–43. MR 1318256 | Zbl 1045.26502
[2] B.  Bongiorno and L.  Di Piazza: Convergence theorem for generalized Riemann-Stieltjes integrals. Real Anal. Exchange 17 (1991–92), 339–361. MR 1147373
[3] B.  Bongiorno, M.  Giertz and W.  Pfeffer: Some nonabsolutely convergent integrals in the real line. Boll. Un. Mat. Ital. (7) 6-B (1992), 371–402. MR 1171108
[4] B.  Bongiorno and W.  Pfeffer: A concept of absolute continuity and a Riemann type integral. Comment. Math. Univ. Carolin. 33 (1992), 184–196. MR 1189651
[5] J. K. Brooks: Representation of weak and strong integrals in Banach spaces. Proc. Nat. Acad. Sci., U.S.A. (1969), 266–279. MR 0274697
[6] S.  Cao: The Henstock integral for Banach-valued functions. SEA Bull. Math. 16 (1992), 35–40. MR 1173605 | Zbl 0749.28007
[7] D.  Caponetti and V.  Marraffa: An integral in the real line defined by BV  partitions of unity. Atti Sem. Mat. Fis. Univ. Modena XlII (1994), 69–82. MR 1282323
[8] J.  Diestel and J. J.  Uhl Jr.: Vector Mesures. Mathematical Surveys, No.15. Amer. Math. Soc., 1977. MR 0453964
[9] W.  Congxin and Y.  Xiaobo: A Riemann-type definition of the Bochner integral. J. Math. Study 27 (1994), 32–36. MR 1318255
[10] D. H.  Fremlin: On the Henstock and McShane integrals of vector-valued functions. Illinois J.  Math. 38 (1994), 471–479. MR 1269699
[11] D. H.  Fremlin and J.  Mendoza: On the integration of vector-valued functions. Illinois J. Math. 38 (1994), 127–147. MR 1245838
[12] R.  Gordon: Riemann integration in Banach spaces. Rocky Mountain J.  Math. 21 (1991), 923–949. DOI 10.1216/rmjm/1181072923 | MR 1138145 | Zbl 0764.28008
[13] E.  Hille and R. S.  Phillips: Functional Analysis and Semigroups. AMS Colloquium Publications, Vol. XXXI, 1957.
[14] R. C.  James: Weak compactness and reflexivity. Israel J.  Math. 2 (1964), 101–119. DOI 10.1007/BF02759950 | MR 0176310 | Zbl 0127.32502
[15] J.  Kurzweil, J.  Mawhin and W. F.  Pfeffer: An integral defined by approximating BV partitions of unity. Czechoslovak Math.  J. 41(116) (1991), 695–712. MR 1134958
[16] P. Y.  Lee: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989. MR 1050957 | Zbl 0699.26004
[17] V.  Marraffa: A descriptive characterization of the variational Henstock integral. Matimyás Mat. 22 (1999), 73–84. MR 1770168 | Zbl 1030.28005
[18] K.  Musial: Pettis integration. Suppl. Rend. Circ. Mat. Palermo, Ser. II, 10 (1985), 133–142. MR 0894278 | Zbl 0649.46040
[19] V. A.  Skvortsov and A. P.  Solodov: A variational integral for Banach-valued functions. Real Anal. Exchange 24 (1998–99), 799–806. MR 1704751
[20] B. S.  Thomson: Derivatives of Interval Functions. Memoires of the American Mathematical Society No. 452, 1991. MR 1078198
Partner of
EuDML logo