Previous |  Up |  Next


existence and uniqueness; Galerkin method; nondegenerate wave equation
Let $\Omega $ be a bounded domain in ${\mathbb{R}}^n$ with a smooth boundary $\Gamma $. In this work we study the existence of solutions for the following boundary value problem: \[ \frac{\partial ^2 y}{\partial t^2}-M\biggl (\int _\Omega |\nabla y|^2\mathrm{d}x\biggr ) \Delta y -\frac{\partial }{\partial t}\Delta y=f(y) \quad \text{in} Q=\Omega \times (0,\infty ),.1 y=0 \quad \text{in} \Sigma _1=\Gamma _{\!1} \times (0,\infty ), M\biggl (\int _\Omega |\nabla y|^2\mathrm{d}x\biggr ) \frac{\partial y}{\partial \nu } +\frac{\partial }{\partial t}\Bigl (\frac{\partial y}{\partial \nu }\Bigr )=g \quad \text{in} \Sigma _0=\Gamma _{\!0} \times (0,\infty ), y(0)=y_0,\quad \frac{\partial y}{\partial t}\,(0)=y_1 \quad \text{in} \quad \Omega , \qquad \mathrm{(1)}\] where $M$ is a $C^1$-function such that $M(\lambda ) \ge \lambda _0 >0$ for every $\lambda \ge 0$ and $f(y)=|y|^\alpha y$ for $\alpha \ge 0$.
[1] M. M.  Cavalcanti, V. N.  Domingos Cavalcanti, J. S.  Prates Filho and J. A.  Soriano: Existence and exponential decay for a Kirchhoff-Carrier model with viscosity. J.  Math. Anal. Appl. 226 (1998), 40–60. DOI 10.1006/jmaa.1998.6057 | MR 1646453
[2] R. Ikehata: On the existence of global solutions for some nonlinear hyperbolic equations with Neumann conditions. TRU Math. 24 (1988), 1–17. MR 0999375 | Zbl 0707.35094
[3] J. L.  Lions: Quelques méthode de résolution des probléme aux limites nonlinéaire. Dunod Gauthier–Villars, Paris (1969). MR 0259693
[4] T.  Matsuyama and R.  Ikehata: On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms. J.  Math. Anal. Appl. 204 (1996), 729–753. DOI 10.1006/jmaa.1996.0464 | MR 1422769
[5] M.  Nakao: Asymptotic stability of the bounded or almost periodic solutions of the wave equations with nonlinear damping terms. J.  Math. Anal. Appl. 58 (1977), 336–343. DOI 10.1016/0022-247X(77)90211-6 | MR 0437890
[6] K. Narasimha: Nonlinear vibration of an elastic string. J.  Sound Vibration 8 (1968), 134–146. DOI 10.1016/0022-460X(68)90200-9
[7] K.  Nishihara and Y.  Yamada: On global solutions of some degenerate quasilinear hyperbolic equation with dissipative damping terms. Funkcial. Ekvac. 33 (1990), 151–159. MR 1065473
[8] K.  Ono: Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J.  Differential Equations 137 (1997), 273–301. DOI 10.1006/jdeq.1997.3263 | MR 1456598 | Zbl 0879.35110
Partner of
EuDML logo