Previous |  Up |  Next

Article

Keywords:
connections of higher order; product preserving functors; lifts of tensors and connections
Summary:
In this paper we consider a product preserving functor $\mathcal F$ of order $r$ and a connection $\Gamma $ of order $r$ on a manifold $M$. We introduce horizontal lifts of tensor fields and linear connections from $M$ to $\mathcal F(M)$ with respect to $\Gamma $. Our definitions and results generalize the particular cases of the tangent bundle and the tangent bundle of higher order.
References:
[1] L.  Cordero, C. T. J. Dodson and N.  de León: Differential Geometry of Frame Bundles. Kluwer Acad. Publ., Dordrecht, 1988.
[2] J.  Gancarzewicz: Connections of order  $r$. Ann. Polon. Math. 34 (1977), 69–83. MR 0440471 | Zbl 0347.53008
[3] J.  Gancarzewicz, S. Mahi and N.  Rahmani: Horizontal lift of tensor fields of type $(1,1)$ from a manifold to its tangent bundle of higher order. Rend. Circ. Mat. Palermo Suppl. 14 (1987), 43–59. MR 0920845
[4] J.  Gancarzewicz, W.  Mikulski and Z. Pogoda: Lifts of tensor fields and linear connections to a product preserving functor. Nagoya Math.  J. 135 (1994), 1–41. MR 1295815
[5] J.  Gancarzewicz and M.  Salgado: Horizontal lifts of tensor fields to the tangent bundle of higher order. Rend. Circ. Mat. Palermo Suppl. 21 (1989), 151–178. MR 1009570
[6] J.  Gancarzewicz and M.  Salgado: Connections of higher order and product preserving functors. IMUJ Preprint no 1997/21, e.-publ. http://www/im.uj.edu.pl
[7] I.  Kolář, P.  Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. MR 1202431
[8] R.  Palais and C.-L.  Terng: Natural bundles have a finite order. Topology 16 (1977), 271–277. DOI 10.1016/0040-9383(77)90008-8 | MR 0467787
[9] K.  Yano and S.  Ishihara: Horizontal lifts from manifolds to its tangent bundle. J.  Math. Mech. 16 (1967), 1015–1030. MR 0210029
[10] K.  Yano and S.  Ishihara: Tangent and Cotangent Bundles: Differential Geometry. Marcel Dekker, New York, 1973. MR 0350650
Partner of
EuDML logo