Previous |  Up |  Next


complete bipartite graph; closed trail; arbitrarily decomposable graph
We prove that any complete bipartite graph $K_{a,b}$, where $a,b$ are even integers, can be decomposed into closed trails with prescribed even lengths.
[1] P. N.  Balister: Packing circuits into $K_{n}$. (to appear). Zbl 1113.05309
[2] P. N.  Balister, B.  Bollobás and R. H.  Schelp: Vertex distinguishing colorings of graphs with $\Delta (G)=2$. Discrete Math. 252 (2002), 17–29. DOI 10.1016/S0012-365X(01)00287-4 | MR 1907743
[3] P. N.  Balister, A.  Kostochka, H.  Li and R. H.  Schelp: Balanced edge colorings. Manuscript, 1999, pp. 16. MR 2041315
[4] C.  Bazgan, A.  Harkat-Benhamdine, H.  Li and M.  Woźniak: On the vertex-distinguishing proper edge-colorings of graphs. J.  Combin. Theory Ser. B 75 (1999), 288–301. DOI 10.1006/jctb.1998.1884 | MR 1676894
[5] A. C.  Burris and R. H.  Schelp: Vertex-distinguishing proper edge-colorings. J.  Graph Theory 26 (1997), 73–82. DOI 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C | MR 1469354
[6] J.  Černý, M.  Horňák and R.  Soták: Observability of a graph. Math. Slovaca 46 (1996), 21–31. MR 1414406
Partner of
EuDML logo