Previous |  Up |  Next


(disjoint; non-singular; singular; non-dense; dense; discrete) iteration group; degree; periodic point; orientation-preserving homeomorphism; rotation number; limit set; orbit; system of functional equations
The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle ${\mathbb{S}^1}$, that is, families ${\mathcal F}=\lbrace F^{v}\:{\mathbb{S}^1}\longrightarrow {\mathbb{S}^1}\; v\in V\rbrace $ of homeomorphisms such that \[ F^{v_{1}}\circ F^{v_{2}}=F^{v_{1}+v_{2}},\quad v_1, v_2\in V, \] and each $F^{v}$ either is the identity mapping or has no fixed point ($(V, +)$ is an arbitrary $2$-divisible nontrivial (i.e., $\mathop {\mathrm card}V>1$) abelian group).
[1] L.  Alsedà, J.  Llibre and M.  Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, 5. World Scientific Publishing Co. Inc., River Edge, 1993. MR 1255515
[2] M. Bajger: On the structure of some flows on the unit circle. Aequationes Math. 55 (1998), 106–121. DOI 10.1007/s000100050023 | MR 1600588 | Zbl 0891.39017
[3] M. Bajger and M. C.  Zdun: On rational flows of continuous functions. Iteration Theory (Batschuns, 1992), World Sci. Publishing, River Edge, 1996, pp. 265–276. MR 1442291
[4] L. S.  Block and W. A.  Coppel: Dynamics in One Dimension. Lecture Notes in Mathematics, 1513. Springer-Verlag, Berlin, 1992. MR 1176513
[5] N.  Bourbaki: Éléments de mathématique. Topologie générale. Hermann, Paris, 1971. MR 0358652 | Zbl 0249.54001
[6] K.  Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363–383. MR 1721896
[7] K. Ciepliński: On conjugacy of disjoint iteration groups on the unit circle. Ann. Math. Sil. 13 (1999), 103–118. MR 1735195
[8] K. Ciepliński: The rotation number of the composition of homeomorphisms. Rocznik Nauk.—Dydakt. AP w Krakowie. Prace Mat. 17 (2000), 83–87. MR 1817486
[9] K.  Ciepliński: Topological conjugacy of disjoint flows on the circle. Bull. Korean Math. Soc. 39 (2002), 333–346. DOI 10.4134/BKMS.2002.39.2.333 | MR 1904668
[10] K.  Ciepliński and M. C. Zdun: On a system of Schröder equations on the circle. Internat. J.  Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883–1888. DOI 10.1142/S0218127403007709 | MR 2015635
[11] I. P.  Cornfeld, S. V.  Fomin and Ya. G.  Sinai: Ergodic Theory. Grundlehren der Mathematischen Wissenschaften, 245. Springer-Verlag, New York, 1982. MR 0832433
[12] Z.  Nitecki: Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms. The M.I.T. Press Cambridge, Massachusetts-London, 1971. MR 0649788 | Zbl 0246.58012
[13] C. T. C.  Wall: A Geometric Introduction to Topology. Addison-Wesley Publishing Co., Reading, Massachusetts-London-Don Mills, 1972. MR 0478128
[14] P.  Walters: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. MR 0648108
[15] M. C.  Zdun: On embedding of homeomorphisms of the circle in a continuous flow. Iteration theory and its functional equations (Lochau, 1984). Lecture Notes in Math., 1163, Springer, Berlin, 1985, pp. 218–231. MR 0829776 | Zbl 0616.54037
[16] M. C.  Zdun: On the embeddability of commuting functions in a flow. Selected topics in functional equations and iteration theory (Graz, 1991). Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 201–212. MR 1226473 | Zbl 0797.39007
[17] M. C.  Zdun: On the orbits of disjoint groups of continuous functions. Rad. Mat. 8 (1992/96), 95–104. MR 1477887
[18] M. C.  Zdun: The structure of iteration groups of continuous functions. Aequationes Math. 46 (1993), 19–37. DOI 10.1007/BF01833995 | MR 1220719 | Zbl 0801.39005
[19] M. C.  Zdun: On some invariants of conjugacy of disjoint iteration groups. Results Math. 26 (1994), 403–410. DOI 10.1007/BF03323067 | MR 1300626 | Zbl 0830.39009
Partner of
EuDML logo