Previous |  Up |  Next


Generalized Riemannian space; Kählerian space; generalized Kählerian space; holomorphically projective mapping; equitorsion holomorphically projective mapping; holomorphically projective parameter; holomorphically projective tensor
In this paper we investigate holomorphically projective mappings of generalized Kählerian spaces. In the case of equitorsion holomorphically projective mappings of generalized Kählerian spaces we obtain five invariant geometric objects for these mappings.
[bib-1] L. P. Eisenhart: Generalized Riemannian spaces I. Proc. Nat. Acad. Sci. USA 37 (1951), 311–315. DOI 10.1073/pnas.37.5.311 | MR 0043530
[bib-2] J. Mikeš, G. A. Starko: $K$-koncircular vector fields and holomorphically projective mappings on Kählerian spaces. Rend. del Circolo di Palermo 46 (1997), 123–127. MR 1469028
[bib-3] S. M. Minčić: Ricci identities in the space of non-symmetric affine connection. Mat. Vesnik 10(25) (1973), 161–172. MR 0341310
[bib-4] S. M. Minčić: New commutation formulas in the non-symetric affine connection space. Publ. Inst. Math. (Beograd) (N. S) 22(36) (1977), 189–199. MR 0482552
[bib-5] S. M. Minčić and M. S. Stanković: Equitorsion geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math. (Beograd) (N. S.) 61(75) (1997), 97–104. MR 1472941
[bib-6] S. M. Minčić: Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connection. Coll. Math. Soc. János Bolyai 31 (1979), 445–460. MR 0706937
[bib-7] S. M. Minčić and M. S. Stanković: Generalized Kählerian spaces (submitted).
[bib-8] T. Otsuki and Y. Tasiro: On curves in Kählerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. MR 0066024
[bib-9] M. Prvanović: A note on holomorphically projective transformations of the Kähler space in a locally product Riemannian space. Tensor 35 (1981), 99–104. MR 0614141
[bib-10] N. S. Sinyukov: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979. (Russian) MR 0552022 | Zbl 0637.53020
[bib-11] K. Yano: Differential Geometry of Complex and Almost Complex Spaces. Pergamon Press, New York, 1965. MR 0187181
[bib-12] K. Yano: On complex conformal connections. Kodai Math. Sem. Rep. 26 (1975), 137–151. DOI 10.2996/kmj/1138846996 | MR 0377736 | Zbl 0302.53013
Partner of
EuDML logo