Previous |  Up |  Next


locally $C^{*}$-algebras; continuous $*$-morphism; inverse system of Hilbert $C^{*}$-modules; exterior tensor product of Hilbert modules; interior tensor product of Hilbert modules
In this paper the tensor products of Hilbert modules over locally $C^{*}$-algebras are defined and their properties are studied. Thus we show that most of the basic properties of the tensor products of Hilbert $C^{*}$-modules are also valid in the context of Hilbert modules over locally $C^{*}$-algebras.
[1] M. Fragoulopoulou: Tensor products of enveloping locally $C^{*}$-algebras. Schriftenreihe, Univ. Münster, 1997, pp. 1–81. MR 1607924 | Zbl 0906.46040
[2] A. Inoue: Locally $C^{*}$-algebras. Mem. Faculty Sci. Kyushu Univ. Ser.  A 75 (1971), 197–235. MR 0305089 | Zbl 0227.46060
[3] K. K. Jensen and K. Thomsen: Elements of  $KK$-theory. Birhäuser-Verlag, , 1991. MR 1124848
[4] M. Joiţa: The stabilization theorem for Hilbert modules over locally $C^{*}$-algebras. The 3rd International Conference on Topological Algebra and Applications, (ICTAA3), Oulu, Finland, July 2–6, 2001. Zbl 1074.46041
[5] M. Joiţa: Strict completely positive linear maps between locally $C^{*}$-algebras and representations on Hilbert modules. J.  London Math. (2) 66 (2002), 421–432. DOI 10.1112/S0024610702003411 | MR 1920412
[6] E. C.  Lance: Hilbert $C^{*}$-modules. A toolkit for operator algebraists. London Math. Soc. Lecture Note Series  210, Cambridge Univ. Press, Cambridge, 1995. MR 1325694 | Zbl 0822.46080
[7] A. Mallios: Hermitian $K$-theory over topological $*$-algebras. J.  Math. Anal. Appl. 106 (1985), 454–539. DOI 10.1016/0022-247X(85)90122-2 | MR 0782803
[8] N. C. Phillips: Inverse limits of  $C^{*}$-algebras. J.  Operator Theory 19 (1988), 159–195. MR 0950831 | Zbl 0662.46063
Partner of
EuDML logo