[1] C. C. Conley: 
Isolated invariant sets and Morse index. (Conf. Board Math. Sci., No 38), Amer. Math. Sci., Providence, 1978. 
MR 0511133[2] C. C. Conley and J. A. Smoller: 
Viscosity matrices for two-dimensional nonlinear hyperbolic system. Comm. Pure Appl. Math. 23 (1970), 867–884. 
DOI 10.1002/cpa.3160230603 | 
MR 0274956[3] C. C. Conley and J. A. Smoller: 
The existence of heteroclinic orbits and applications. In: Dynamical Systems, Theory and Applications. Lecture Notes in Physics, Vol. 38, J.  Moser (ed.), Springer-Verlag, New York, 1975, pp. 551–524. 
MR 0454416[5] C. Ding: Connecting orbits of gradient-like systems in $R^n$. Acta Mathematica Sinica 43 (2000), 1115–1118.
[6] I. M. Gelfand: 
Some problems in the theory of quasilinear equations. Usp. Mat. Nauk. 14 (1959), 87–158. 
MR 0110868[7] P. Hartman: 
Ordinary Differential Equations. 2nd ed. Birkhäuser-Verlag, Boston, 1985. 
MR 0658490[8] H. Tusen: Orbits connecting singular points. Acta Mathematica Sinica 40 (1997), 551–558.
[9] H. Tusen: Some global properties in dynamical systems. PhD.  thesis, Inst. of Math., Academia Sinica, 1998.
[10] S. Yu: 
Isolating blocks and the existence of connecting orbits. Science in China (Series  A) 27 (1997), 298–301. 
MR 1465168[13] C. Zhao and X. Wang: 
The existence and uniqueness of trajectories joining critical points for differential equations in  $R^3$. Chaos, Solitons and Fractals 12 (2001), 153–158. 
MR 1786916