Previous |  Up |  Next


Cauchy problem; Lipschitz function; Picard theorem; succesive approximations method; contractions principle
In this paper we give some new results concerning solvability of the 1-dimensional differential equation $y^{\prime } = f(x,y)$ with initial conditions. We study the basic theorem due to Picard. First we prove that the existence and uniqueness result remains true if $f$ is a Lipschitz function with respect to the first argument. In the second part we give a contractive method for the proof of Picard theorem. These considerations allow us to develop two new methods for finding an approximation sequence for the solution. Finally, some applications are given.
[1] V. Barbu: Ecuatii Diferentiale. Ed. Junimea, Iasi, 1985.
[2] H.  Brézis: Analyse Fonctionnelle. Théorie et applications. Masson, Paris, 1983. MR 0697382
[3] A.  Halanay: Ecuatii Diferentiale. Ed. Did. si Ped., Bucuresti, 1972. MR 0355142 | Zbl 0258.34001
[4] Gh.  Morosanu: Ecuatii Diferentiale. Aplicatii. Ed. Academiei, Bucuresti, 1989. MR 1031994
[5] L.  Pontriaguine: Equations Différentielles Ordinaires. Mir, Moscow, 1969. MR 0261056 | Zbl 0185.15701
[6] S.  Sburlan, L.  Barbu and C.  Mortici: Ecuatii Diferentiale, Integrale si Sisteme Dinamice. Ex Ponto, Constanta, 1999. MR 1734289
Partner of
EuDML logo