Previous |  Up |  Next


numerical; semigroups; Apéry; sets; symmetric; affine; proportionally; modular; Diophantine; inequality
We study numerical semigroups $S$ with the property that if $m$ is the multiplicity of $S$ and $w(i)$ is the least element of $S$ congruent with $i$ modulo $m$, then $0<w(1)<\dots <w(m-1)$. The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.
[1] F.  Ajili and E.  Contejean: Avoiding slack variables in the solving of linear Diophantine equations and inequations. Principles and practice of constraint programming. Theoret. Comput. Sci. 173 (1997), 183–208. DOI 10.1016/S0304-3975(96)00195-8 | MR 1436701
[2] R.  Apéry: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222 (1946). MR 0017942
[3] V.  Barucci, D. E.  Dobbs and M.  Fontana: Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains. Memoirs of the Amer. Math. Soc. Vol. 598. , 1997. MR 1357822
[4] J.  Bertin and P.  Carbonne: Semi-groupes d’entiers et application aux branches. J.  Algebra 49 (1987), 81–95. DOI 10.1016/0021-8693(77)90268-X | MR 0568894
[5] A.  Brauer: On a problem of partitions. Amer. J.  Math. 64 (1942), 299–312. DOI 10.2307/2371684 | MR 0006196 | Zbl 0061.06801
[6] H.  Bresinsky: On prime ideals with generic zero $x_i=t^{n_i}$. Proc. Amer. Math. Soc. 47 (1975), 329–332. MR 0389912
[7] E.  Contejean and H.  Devie: An efficient incremental algorithm for solving systems of linear diophantine equations. Inform. and Comput. 113 (1994), 143–172. DOI 10.1006/inco.1994.1067 | MR 1283022
[8] C.  Delorme: Sous-monoïdes d’intersection complète de  $\mathbb{N}$. Ann. Scient. École Norm. Sup. 9 (1976), 145–154. MR 0407038
[9] R.  Fröberg, C.  Gottlieb and R.  Häggkvist: Semigroups, semigroup rings and analytically irreducible rings. Reports Dpt. of Mathematics, University of Stockholm, Vol.  1, 1986.
[10] R.  Fröberg, C.  Gottlieb and R.  Häggkvist: On numerical semigroups. Semigroup Forum 35 (1987), 63–83. DOI 10.1007/BF02573091
[11] P. A.  García-Sánchez and J. C.  Rosales: Numerical semigroups generated by intervals. Pacific J.  Math. 191 (1999), 75–83. DOI 10.2140/pjm.1999.191.75
[12] R.  Gilmer: Commutative Semigroup Rings. The University of Chicago Press, 1984. MR 0741678 | Zbl 0566.20050
[13] J.  Herzog: Generators and relations of abelian semigroups and semigroup rings. Manuscripta Math 3 (1970), 175–193. DOI 10.1007/BF01273309 | MR 0269762 | Zbl 0211.33801
[14] E.  Kunz: The value-semigroup of a one-dimensional Gorenstein ring. Proc. Amer. Math. Soc. 25 (1973), 748–751. DOI 10.1090/S0002-9939-1970-0265353-7 | MR 0265353
[15] J. L.  Ramírez Alfonsín: The Diophantine Frobenius problem. Forschungsintitut für Diskrete Mathematik, Bonn, Report No.00893, 2000.
[16] J. L.  Ramírez Alfonsín: The Diophantine Frobenius problem, manuscript.
[17] J. C.  Rosales: On numerical semigroups. Semigroup Forum 52 (1996), 307–318. DOI 10.1007/BF02574106 | MR 1377695 | Zbl 0853.20041
[18] J. C.  Rosales: On symmetric numerical semigroups. J.  Algebra 182 (1996), 422–434. DOI 10.1006/jabr.1996.0178 | MR 1391591 | Zbl 0856.20043
[19] J. C.  Rosales and M. B.  Branco: Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups. J. Pure Appl. Algebra 171 (2002), 303–314. DOI 10.1016/S0022-4049(01)00128-1 | MR 1904486
[20] J. C.  Rosales and P. A.  García-Sánchez: Finitely Generated Commutative Monoids. Nova Science Publishers, New York, 1999. MR 1694173
[21] J. C.  Rosales, P. A.  García-Sánchez, J. I.  García-García and M. B.  Branco: Systems of inequalities and numerical semigroups. J.  London Math. Soc. 65 (2002), 611–623. DOI 10.1112/S0024610701003052 | MR 1895736
[22] J. C.  Rosales, P. A. García-Sánchez, J. I.  García-García and J. M. Urbano-Blanco: Proportionally modular Diophantine inequalities. J.  Number Theory 103 (2003), 281–294. DOI 10.1016/j.jnt.2003.06.002 | MR 2020273
[23] E. S.  Selmer: On a linear Diophantine problem of Frobenius. J.  Reine Angew. Math. 293/294 (1977), 1–17. MR 0441855
[24] K.  Watanabe: Some examples of one dimensional Gorenstein domains. Nagoya Math.  J. 49 (1973), 101–109. MR 0318140 | Zbl 0257.13024
Partner of
EuDML logo