Previous |  Up |  Next


Taylor’s theorem; Henstock-Kurzweil integral; Alexiewicz norm
When a real-valued function of one variable is approximated by its $n$th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue $p$-norms in cases where $f^{(n)}$ or $f^{(n+1)}$ are Henstock-Kurzweil integrable. When the only assumption is that $f^{(n)}~$ is Henstock-Kurzweil integrable then a modified form of the $n$th degree Taylor polynomial is used. When the only assumption is that $f^{(n)}\in C^0$ then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1.
[1] G. A.  Anastassiou and S. S.  Dragomir: On some estimates of the remainder in Taylor’s formula. J.  Math. Anal. Appl. 263 (2001), 246–263. DOI 10.1006/jmaa.2001.7622 | MR 1865279
[2] V. G.  Čelidze and A. G.  Džvaršeǐšvili: The Theory of the Denjoy Integral and Some Applications. World Scientific, Singapore, 1989. MR 1036270
[3] G. B.  Folland: Remainder estimates in Taylor’s theorem. Amer. Math. Monthly 97 (1990), 233–235. DOI 10.2307/2324693 | MR 1048439 | Zbl 0737.41031
[4] S.  Saks: Theory of the Integral. Monografie Matematyczne, Warsaw, 1937. Zbl 0017.30004
[5] C.  Swartz: Introduction to Gauge Integrals. World Scientific, Singapore, 2001. MR 1845270 | Zbl 0982.26006
[6] H. B.  Thompson: Taylor’s theorem using the generalized Riemann integral. Amer. Math. Monthly 96 (1989), 346–350. DOI 10.2307/2324092 | MR 0992083 | Zbl 0682.26001
[7] R.  Výborný: Some applications of Kurzweil-Henstock integration. Math. Bohem. 118 (1993), 425–441. MR 1251885
[8] W. H.  Young: The Fundamental Theorems of the Differential Calculus. Cambridge University Press, Cambridge, 1910.
Partner of
EuDML logo