Previous |  Up |  Next


local convergence theorem; stochastic adapted sequence; martingale
In this paper we establish a new local convergence theorem for partial sums of arbitrary stochastic adapted sequences. As corollaries, we generalize some recently obtained results and prove a limit theorem for the entropy density of an arbitrary information source, which is an extension of case of nonhomogeneous Markov chains.
[1] P.  Algoat, T.  Cover: A sandwich proof of the Shannon-McMillan-Breiman theorem. Annals of Probability 16 (1988), 899–909. DOI 10.1214/aop/1176991794 | MR 0929085
[2] W.  Liu, J. A.  Yan, and W. G.  Yang: A limit theorem for partial sums of random variables and its applications. Statistics and Probability Letters 62 (2003), 79–86. DOI 10.1016/S0167-7152(02)00428-5 | MR 1965374
[3] W.  Liu: Some limit properties of the multivariate function sequences of discrete random variables. Statistics and Probability Letters 61 (2003), 41–50. DOI 10.1016/S0167-7152(02)00304-8 | MR 1950452 | Zbl 1016.60034
[4] W.  Liu, W. G.  Yang: A limit theorem for the entropy density of nonhomogeneous Markov information source. Statistics and Probability Letters 22 (1995), 295–301. DOI 10.1016/0167-7152(94)00080-R | MR 1333187
Partner of
EuDML logo