Article

Full entry | PDF   (0.3 MB)
Keywords:
travel groupoid; graph; path; geodetic graph
Summary:
In this paper, by a travel groupoid is meant an ordered pair $(V, *)$ such that $V$ is a nonempty set and $*$ is a binary operation on $V$ satisfying the following two conditions for all $u, v \in V$: $(u * v) * u = u; \text{ if }(u * v ) * v = u, \text{ then } u = v.$ Let $(V, *)$ be a travel groupoid. It is easy to show that if $x, y \in V$, then $x * y = y$ if and only if $y * x = x$. We say that $(V, *)$ is on a (finite or infinite) graph $G$ if $V(G) = V$ and $E(G) = \lbrace \lbrace u, v\rbrace \: u, v \in V \text{ and } u \ne u * v = v\rbrace .$ Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied.
References:
[1] G.  Chartrand, L.  Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall, London, 1996. MR 1408678
[2] L.  Nebeský: An algebraic characterization of geodetic graphs. Czechoslovak Math.  J. 48(123) (1998), 701–710. DOI 10.1023/A:1022435605919 | MR 1658245
[3] L.  Nebeský: A tree as a finite nonempty set with a binary operation. Math. Bohem. 125 (2000), 455–458. MR 1802293
[4] L.  Nebeský: New proof of a characterization of geodetic graphs. Czechoslovak Math.  J. 52(127) (2002), 33–39. DOI 10.1023/A:1021715219620 | MR 1885455
[5] L.  Nebeský: On signpost systems and connected graphs. Czechoslovak Math.  J. 55(130) (2005), 283–293. DOI 10.1007/s10587-005-0022-0 | MR 2137138

Partner of