Previous |  Up |  Next


Banach spaces; asymptotically isometric copy of $\ell _p$; hereditarily $\ell _p$ Banach spaces
Let $X$ denote a specific space of the class of $X_{\alpha ,p}$ Banach sequence spaces which were constructed by Hagler and the first named author as classes of hereditarily $\ell _p$ Banach spaces. We show that for $p>1$ the Banach space $X$ contains asymptotically isometric copies of $\ell _{p}$. It is known that any member of the class is a dual space. We show that the predual of $X$ contains isometric copies of $\ell _q$ where $\frac{1}{p}+\frac{1}{q}=1$. For $p=1$ it is known that the predual of the Banach space $X$ contains asymptotically isometric copies of $c_0$. Here we give a direct proof of the known result that $X$ contains asymptotically isometric copies of $\ell _1$.
[1] P.  Azimi: A new class of Banach sequence spaces. Bull. Iranian Math. Soc. 28 (2002), 57–68. MR 1992259 | Zbl 1035.46006
[2] P.  Azimi, J.  Hagler: Examples of hereditarily $\ell _{1}$ Banach spaces failing the Schur property. Pacific J.  Math. 122 (1986), 287–297. DOI 10.2140/pjm.1986.122.287 | MR 0831114
[3] S.  Chen, B.-L.  Lin: Dual action of asymptotically isometric copies of  $\ell _{p}$ ($1 \le p < \infty $) and $c_{0}$. Collect. Math. 48 (1997), 449–458. MR 1602639
[4] J.  Dilworth, M.  Girardi, and J.  Hagler: Dual Banach spaces which contains an isometric copy of  $L_{1}$. Bull. Polish Acad. Sci. 48 (2000), 1–12. MR 1751149
[5] P. N.  Dowling, C. J.  Lennard: Every nonreflexive subspace of  $L_1$ fails the fixed point property. Proc. Amer. Math. Soc. 125 (1997), 443–446. DOI 10.1090/S0002-9939-97-03577-6 | MR 1350940
[6] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces  I. Sequence Spaces. Springer Verlag, Berlin, 1977. MR 0500056
Partner of
EuDML logo