Previous |  Up |  Next


fractional integrals; commutators; BMO; weights; Orlicz spaces; maximal functions
Given $\alpha $, $0<\alpha <n$, and $b\in {\mathrm BMO}$, we give sufficient conditions on weights for the commutator of the fractional integral operator, $[b,I_\alpha ]$, to satisfy weighted endpoint inequalities on $\mathbb{R}^n$ and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on $\mathbb{R}^n$.
[1] S. Chanillo: A note on commutators. Indiana Math. J. 31 (1982), 7–16. DOI 10.1512/iumj.1982.31.31002 | MR 0642611 | Zbl 0523.42015
[2] D.  Cruz-Uribe, SFO: New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J. 7 (2000), 33–42. MR 1768043
[3] D. Cruz-Uribe, SFO, A. Fiorenza: Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ. Mat. 47 (2003), 103–131. DOI 10.5565/PUBLMAT_47103_05 | MR 1970896
[4] J. Duoandikoetxea: Fourier Analysis. Grad. Studies Math. Vol. 29. Am. Math. Soc., Providence, 2000. MR 1800316
[5] J.  García-Cuerva, J. L. Rubio de Francia: Weighted Norm Inequalities and Related Topics. Math. Studies Vol. 116. North Holland, Amsterdam, 1985. MR 0848136
[6] L. Maligranda: Orlicz spaces and interpolation. Seminars in Mathematics  5, IMECC, Universidad Estadual de Campinas, Campinas, 1989. MR 2264389 | Zbl 0874.46022
[7] B. Muckenhoupt, R. Wheeden: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192 (1974), 261–274. DOI 10.1090/S0002-9947-1974-0340523-6 | MR 0340523
[8] C.  Pérez: On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights. Proc. London Math. Soc. 71 (1995), 135–157. MR 1327936
[9] C. Pérez: Endpoint estimates for commutators of singular integral operators. J.  Funct. Anal. 128 (1995), 163–185. DOI 10.1006/jfan.1995.1027 | MR 1317714
[10] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces. Marcel Dekker, New York, 1991. MR 1113700
Partner of
EuDML logo