Full entry |
PDF
(0.3 MB)
Feedback

$p$-basic subgroups; normalized units; group algebras; starred groups

References:

[1] D. O. Cutler: **Another summable $C_\Omega $-group**. Proc. Amer. Math. Soc. 26 (1970), 43–44. MR 0262355

[2] P. V. Danchev: **Topologically pure and basis subgroups in commutative group rings**. Compt. Rend. Acad. Bulg. Sci. 48 (1995), 7–10. MR 1405499 | Zbl 0853.16040

[3] P. V. Danchev: **Commutative group algebras of $\sigma $-summable abelian groups**. Proc. Amer. Math. Soc. 125 (1997), 2559–2564. DOI 10.1090/S0002-9939-97-04052-5 | MR 1415581 | Zbl 0886.16024

[4] P. V. Danchev: **$C_{\lambda }$-groups and $\lambda $-basic subgroups in modular group rings**. Hokkaido Math. J. 30 (2001), 283–296. DOI 10.14492/hokmj/1350911954 | MR 1844820 | Zbl 0989.16019

[5] P. V. Danchev: **Basic subgroups in abelian group rings**. Czechoslovak Math. J. 52 (2002), 129–140. DOI 10.1023/A:1021779506416 | MR 1885462 | Zbl 1003.16026

[6] P. V. Danchev: **Basic subgroups in commutative modular group rings**. Math. Bohem. 129 (2004), 79–90. MR 2048788 | Zbl 1057.16028

[7] P. V. Danchev: **Subgroups of the basic subgroup in a modular group ring**. Math. Slovaca 55 (2005), 431–441. MR 2181782 | Zbl 1112.16030

[8] P. V. Danchev: **Sylow $p$-subgroups of commutative modular and semisimple group rings**. Compt. Rend. Acad. Bulg. Sci. 54 (2001), 5–6. MR 1845379 | Zbl 0987.16023

[9] L. Fuchs: **Infinite abelian groups, I**. Mir, Moscow, 1974. (Russian) MR 0346073

[10] P. D. Hill: **A summable $C_{\Omega }$-group**. Proc. Amer. Math. Soc. 23 (1969), 428–430. MR 0245674

[11] G. Karpilovsky: **Unit groups of group rings**. North-Holland, Amsterdam, 1989. MR 1042757 | Zbl 0687.16010

[12] L. Kovács: **On subgroups of the basic subgroup**. Publ. Math. Debrecen 5 (1958), 261–264. MR 0100628

[13] W. May: **The direct factor problem for modular abelian group algebras**. Contemp. Math. 93 (1989), 303–308. DOI 10.1090/conm/093/1003359 | MR 1003359 | Zbl 0676.16010

[14] W. May: **Modular group algebras of simply presented abelian groups**. Proc. Amer. Math. Soc. 104 (1988), 403–409. DOI 10.1090/S0002-9939-1988-0962805-2 | MR 0962805 | Zbl 0691.20008

[15] N. Nachev: **Basic subgroups of the group of normalized units in modular group rings**. Houston J. Math. 22 (1996), 225–232. MR 1402745