[1] T.  Arias-Marco: 
The classification of 4-dimensional homogeneous D’Atri spaces revisited. Differential Geometry and its Applications (to appear). 
MR 2293639 | 
Zbl 1121.53026 
[2] L.  Bérard Bergery: 
Les espaces homogènes riemanniens de dimension  4. Géométrie riemannienne en dimension 4, L.  Bérard Bergery, M.  Berger, C.  Houzel (eds.), CEDIC, Paris, 1981. (French) 
MR 0769130 
[3] E.  Boeckx, L.  Vanhecke, O.  Kowalski: 
Riemannian Manifolds of Conullity Two. World Scientific, Singapore, 1996. 
MR 1462887 
[5] J. E.  D’Atri, H. K.  Nickerson: 
Divergence preserving geodesic symmetries. J. Differ. Geom. 3 (1969), 467–476. 
MR 0262969 
[6] J. E.  D’Atri, H. K.  Nickerson: 
Geodesic symmetries in spaces with special curvature tensors. J. Differ. Geom. 9 (1974), 251–262. 
MR 0394520 
[7] G. R.  Jensen: 
Homogeneous Einstein spaces of dimension four. J. Differ. Geom. 3 (1969), 309–349. 
MR 0261487 | 
Zbl 0194.53203 
[8] S.  Kobayashi, K.  Nomizu: 
Foundations of Differential Geometry  I. Interscience, New York, 1963. 
MR 0152974 
[9] O.  Kowalski: 
Spaces with volume-preserving symmetries and related classes of Riemannian manifolds. Rend. Semin. Mat. Univ. Politec. Torino, Fascicolo Speciale (1983), 131–158. 
MR 0829002 | 
Zbl 0631.53033 
[10] O.  Kowalski, F.  Prüfer, L.  Vanhecke: 
D’Atri Spaces. Topics in Geometry. Prog. Nonlinear Differ. Equ. Appl. 20 (1996), 241–284. 
MR 1390318 
[13] F.  Podestà, A.  Spiro: 
Four-dimensional Einstein-like manifolds and curvature homogeneity. Geom. Dedicata 54 (1995), 225–243. 
DOI 10.1007/BF01265339 | 
MR 1326728 
[15] Z. I.  Szabó: Spectral theory for operator families on Riemannian manifolds. Proc. Symp. Pure Maths. 54 (1993), 615–665.