[1] F. W. Anderson and K. R. Fuller: 
Rings and categories of modules. Springer-Verlag, New York, 1974. 
MR 0417223[2] A. W. Chatters and C. R. Hajarnavis: 
Rings in which every complement right ideal is a direct summand. Quart. J. Math. Oxford. 28 (1977), 61–80. 
DOI 10.1093/qmath/28.1.61 | 
MR 0437595[3] P. E. Bland: 
Topics in torsion theory. Math. Research, Berlin, Wiley-VCH Verlag, p. 103, 1998. 
MR 1640903 | 
Zbl 0899.16013[4] N. Viet Dung, D. Van Huynh, P. F. Smith and R. Wisbauer: 
Extending modules. Longman, Harlow, 1994. 
MR 1312366[7] S. Doğruöz: 
Classes of extending modules associated with a torsion theory. East-west J. Math. (2007), to appear. 
MR 2442423[8] K. R. Goodearl and R. B. Warfield: An introduction to noncommutative Noetherian rings. London Math. Society Student Texts 16 (1989).
[9] A. Harmanci and P. F. Smith: 
Finite direct sums of CS-modules. Houston J. Math. 19 (1993), 523–532. 
MR 1251607[11] M. A. Kamal and B. J. Muller: 
Extending modules over commutative domains. Osaka J. Math. 25 (1988), 531–538. 
MR 0969016[12] B. Stenström: 
Rings of Quotients. Springer-Verlag: Berlin, 1975. 
MR 0389953[13] P. F. Smith, Ana M. de Viola-Prioli and Jorge E. Viola-Prioli: 
Modules complemented with respect to a torsion theory. Communications in Algebra 25 (1997), 1307–1326. 
DOI 10.1080/00927879708825921 | 
MR 1437673