Previous |  Up |  Next


We give some explicit values of the constants $C_{1}$ and $C_{2}$ in the inequality $C_{1}/{\sin (\frac{\pi }{p})}\le \left| P\right| _{p}\le C_{2}/{\sin (\frac{\pi }{p})}$ where $\left| P\right| _{p}$ denotes the norm of the Bergman projection on the $L^{p}$ space.
[1] R. M. Range: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer-Verlag, 1986. MR 0847923 | Zbl 0591.32002
[2] K. Zhu: Operator Theory in Function Spaces. Marcel Dekker, New York, 1990. MR 1074007 | Zbl 0706.47019
[3] K. Zhu: A sharp norm estimate of the Bergman projection. Zbl 1105.32006
Partner of
EuDML logo