Previous |  Up |  Next

Article

References:
[1] C. W. Cryer, L. Tavernini: The numerical solution of Volterra functional differential equations by Euler's method. SIAM J. Numer. Anal. 9 (1972), 105-129. DOI 10.1137/0709012 | MR 0312756 | Zbl 0244.65085
[2] A. Feldstein, R. Goodman: Numerical solution of ordinary and гetarded diffeгential equations with discontinuous derivatives. Numer. Math. 21 (1973), 1-13. DOI 10.1007/BF01436181 | MR 0381320
[3] P. Henrici: Discгete Variable Methods in Ordinary Differential Equations. New York, 1962.
[4] Z. Jackiewicz: One-step methods for the numeгical solution of Volteгra functional differential equations of neutral type. Applicable Anal. 12 (1981), 1-11. DOI 10.1080/00036818108839344 | MR 0618517
[5] Z. Jackiewicz: One-step methods of any order for neutral functional differential equations. SIAM J. Numeг. Anal. 21 (1984), 486-511. DOI 10.1137/0721036 | MR 0744170 | Zbl 0562.65056
[6] T. Jankowski, M. Kwapisz: On the existence and uniqueness of solutions of boundary-value problem for differential equations with parameter. Math. Nachr. 7i (1976), 237-247. DOI 10.1002/mana.19760710119 | MR 0405190
[7] T. Jankowski: Boundary value problems with a parameteг of differential equations with deviated arguments. Math. Nachr. 125 (1986), 7-28. MR 0847349
[8] T. Jankowski: One-step methods for retarded differential equations with parameters. Сomputing AЗ (1990), 343-359. MR 1045067 | Zbl 0689.65053
[9] T. Jankowski: Сonvergence of multistep methods for retarded diffeгential equations with parameters. Applicable Anal. 57(1990), 227-251. MR 1116170
[10] Т. Pomentale: A constructive theorem of existence and uniqueness for the problem $V = f(x, y, \lambda)$, $y(a) = \alpha$, $y(b) = \beta$.$. ZAMM 56 (1976), 387-388. MR 0430389
[11] J. Stoer, R. Bulirsch: Introduction to Numerical Analysis. New York, Heidelberg, Berlin, 1980. MR 0578346 | Zbl 0553.65004
[12] L. Tavernini: One-step methods for the numerical solutions of Volterra functional differential equations. SIAM J. Numer. Anal. 8 (1971), 786-795. DOI 10.1137/0708072 | MR 0295617
Partner of
EuDML logo