Full entry |
PDF
(0.3 MB)
Feedback

nonlinear least squares; maximum likelihood; asymptotic bias; nonlinear constraints; transformation of parameters

Related articles:

References:

[1] M.J. Box: **Bias in nonlinear estimation**. Journal of the Royal Statistical Society B 33 (1971), 171–201. MR 0315827 | Zbl 0232.62029

[2] D.R. Cox and E.J. Snell: **A general definition of residuals**. Journal of the Royal Statistical Society B 30 (1968), 248–275. MR 0237052

[3] H. Cramér: **Mathematical Methods of Statistics, 13th edition**. Princeton University Press, Princeton, 1974. MR 1816288

[4] J.-B. Denis and A. Pázman: **Bias of LS estimators in nonlinear regression models with constraints. Part II: Biadditive models**. Appl. Math. 44 (1999), 375–403. DOI 10.1023/A:1023045028073 | MR 1709502

[5] A. Pázman: **Nonlinear statistical models**. Kluwer Academic Publishers, Dordrecht, 1993. MR 1254661

[6] A. Pázman: **Bias of the MLE in singular nonlinear regression models**. (to appear). MR 0483216

[7] A. Pázman and J.-B. Denis: **Bias in nonlinear regression models with constrained parameters**. Technical report n$^{\circ }$ 4, Unité de biométrie INRA, Versailles, 1997.

[8] S.D. Silvey: **The Lagrangian multiplier test. Annals of Mathematical Statistics**. 30 (1959), 389–407. DOI 10.1214/aoms/1177706259 | MR 0104307

[9] S.D. Silvey: **Statistical Inference, 3rd edition**. Chapman and Hall, London, 1979. MR 0500810

[10] C.R. Rao and S.K. Mitra: **Generalized inverse of matrices and its applications**. John Wiley, New York, 1971. MR 0338013