Previous |  Up |  Next


nonlinear PDEs; Maxwell’s equations; nonlinear conductivity; homogenization; existence of solution; unique solution; two-scale convergence; corrector results; heterogeneous materials; compactness result; non-periodic medium
The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous system converge weakly to the solution of the homogenized system. Furthermore, we prove corrector results, important for numerical implementations.
[1] G.  Allaire: Homogenization and two-scale convergence. SIAM J.  Math. Anal. 23 (1992), 1482–1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[2] M. Artola, M. Cessenat: Diffraction d’une onde électromagnetique par un obstacle borné à permittivité et perméabilité élevées. C. R.  Acad. Sci. Paris, Sér.  I  Math. 314 (1992), 349–354. MR 1153713
[3] A.  Bensoussan, J. L. Lions and G.  Papanicolaou: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. North-Holland Publishing Company, Amsterdam-New York-Oxford, 1978. MR 0503330
[4] B. Birnir, N. Wellander: Homogenized Maxwell’s equations; a model for ceramic varistors. Submitted.
[5] E. Coddington, N. Levinson: Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955. MR 0069338
[6] G. Duvaut, J. L. Lions: Inequalities in Mechanics and Physics. Springer Verlag, Berlin-Heidelberg-New York, 1976. MR 0521262
[7] L. C. Evans, R. F. Gariepy: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, 1992. MR 1158660
[8] A. Holmbom: The concept of parabolic two-scale convergence, a new compactness result and its application to homogenization of evolution partial differential equations. Research report 1994-18, Mid-Sweden University Östersund.
[9] A. Holmbom: Some modes of convergence and their application to homogenization and optimal composites design. Ph.D. thesis, Luleå University of Technology, 1996.
[10] P. A. Markowich, F.  Poupaud: The Maxwell equation in a periodic medium: Homogenization of the energy density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996), 301–324. MR 1433425
[11] C.-W. Nan, D. R. Clarke: Effect of variations in grain size and grain boundary barrier heights on the current-voltage characteristics of ZnO varistors. J. Am. Ceram. Soc. 79 (1996), 3185–3192. DOI 10.1111/j.1151-2916.1996.tb08094.x
[12] A. Negro: Some problems of homogenization in quasistationary Maxwell equations. In: Applications of Multiple Scaling in Mechanics, Proc. Int. Conf., Ecole Normale Superieure, Paris 1986, Rech. Math. Appl. 4, Masson, Paris, 1987, pp. 246–258. MR 0901998 | Zbl 0644.73077
[13] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J.  Math. Anal. 20 (1989), 608–623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[14] E.  Sanchez-Palencia: Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. Springer-Verlag, Berlin-Heidelberg-New-York, 1980. MR 0578345
[15] A. Vojta, Q. Wen and D. R.  Clarke: Influence of microstructural disorder on the current transport behavior of varistor ceramics. Comput. Mater. Sci. 6 (1996), 51–62. DOI 10.1016/0927-0256(96)00011-0
[16] A. Vojta, D. R. Clarke: Microstructural origin of current localization and “puncture” failure in varistor ceramics. J. Appl. Phys. 81 (1997), 1–9.
[17] N. Wellander: Homogenization of the Maxwell equations: Case  I. Linear theory. Appl. Math. 46 (2001), 29–51. DOI 10.1023/A:1013727504393 | MR 1808428 | Zbl 1058.78004
[18] N. Wellander: Homogenization of some linear and nonlinear partial differential equations. Ph.D.  thesis, Luleå University of Technology, 1998.
[19] E.  Zeidler: Nonlinear Functional Analysis and its Applications, Volumes IIA and IIB. Springer-Verlag, Berlin, 1990.
[20] V. V. Zhikov, S. M. Kozlov and O. A.  Oleinik: Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Leyden, 1994. MR 1329546
Partner of
EuDML logo