[1] Alimohammadi, D., Ebadian, A.: 
Headberg’s theorem in real Lipschitz algebras. Indian J. Pure Appl. Math. 32 (2001), 1479–1493. 
MR 1878062[2] Bade, W. G., Curtis, P. C., Dales, H. G.: 
Amenability and weak amenability for Berurling and Lipschitz algebras. Proc. London Math. Soc. 55 (3) (1987), 359–377. 
MR 0896225[3] Cao, H. X., Xu, Z. B.: 
Some properties of Lipschitz-$\alpha $ operators. Acta Math. Sin. (Engl. Ser.) 45 (2) (2002), 279–286. 
MR 1928136[4] Cao, H. X., Zhang, J. H., Xu, Z. B.: 
Characterizations and extentions of Lipschitz-$\alpha $ operators. Acta Math. Sin. (Engl. Ser.) 22 (3) (2006), 671–678. 
DOI 10.1007/s10114-005-0727-x | 
MR 2219676[5] Dales, H. G.: 
Banach Algebras and Automatic Continuty. Clarendon Press, Oxford, 2000. 
MR 1816726[6] Ebadian, A.: 
Prime ideals in Lipschitz algebras of finite differentable function. Honam Math. J. 22 (2000), 21–30. 
MR 1779197[10] Runde, V.: 
Lectures on Amenability. Springer, 2001. 
MR 1874893[13] Weaver, N.: 
Subalgebras of little Lipschitz algebras. Pacific J. Math. 173 (1996), 283–293. 
MR 1387803 | 
Zbl 0846.54013[14] Weaver, N.: 
Lipschitz Algebras. World Scientific Publishing Co., Inc., River Edge, NJ, 1999. 
MR 1832645 | 
Zbl 0936.46002