Previous |  Up |  Next


Coupled differential system; boundary value problem; singularity of the first kind; Moore-Penrose pseudo-inverse
In this paper we obtain existence conditions and an explicit closed form expression of the general solution of twopoint boundary value problems for coupled systems of second order differential equations with a singularity of the first kind. The approach is algebraic and is based on a matrix representation of the system as a second order Euler matrix differential equation that avoids the increase of the problem dimension derived from the standard reduction of the order method.
[1] S. L. Campbell and C. D. Meyer, jr.: Generalized inverses of linear transformations. Pitman Pubs. Co., 1979.
[2] I. S. Gradshteyn and I. M. Ryzhik: Table of integrals, series and products. Academic Press, 1980. MR 1773820
[3] L. Jódar: Boundary value problems and Cauchy problems for the second order Euler operator differential equation. Linear Algebra Appls. 91 (1987), 1–12. MR 0888475
[4] L. Jódar: Explicit solutions of two-point boundary value problems. Math. Zeitschrift 199 (1988), 555–564. DOI 10.1007/BF01161644 | MR 0968321
[5] L. Jódar: On the Euler differential equation $A_2 t^2 X^{\prime \prime }+tA_1 X^{\prime }+A_0 X=0$. Applied Maths. Letters 2(3) (1989), 233–237. MR 1013885
[6] H. B. Keller and A. W. Wolfe: On the nonunique equilibrium states and buckling mechanism of spherical shells. J. Soc. Indust. Applied Maths. 13 (1965), 674–705. DOI 10.1137/0113045 | MR 0183174
[7] P. Lancaster and M. Tismenetsky: The theory of matrices. Academic Press, second ed., 1985. MR 0792300
[8] MACSYMA. MACSYMA Symbolics Inc., 1989. Zbl 0745.33007
[9] C. B. Moler: MATLAB user’s guide. Technical Report CS81-1 (1980), Computer Sci. Department, Univ. of New Mexico, Alburquerque.
[10] J. M. Ortega: Numerical analysis, a second course. Academic Press, 1972. MR 0403154 | Zbl 0248.65001
[11] C. R. Rao and S. K. Mitra: Generalized inverse of matrices and its applications. John-Wiley, 1971. MR 0338013
[12] P. Rentrop: Eine Taylorreihenmethode zur numerischen Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie. TUM, Institut für Mathematik, München, 1977.
[13] E. Weinmüller: On the boundary value problem for systems of ordinary second order differential equations with a singularity of the first kind. SIAM J. Math. Anal. 15 (1984), 287–307. DOI 10.1137/0515023
Partner of
EuDML logo