Previous |  Up |  Next


spectral methods; singular perturbation; stabilization; domain decomposition; iterative solver; multigrid method
We study spectral discretizations for singular perturbation problems. A special technique of stabilization for the spectral method is proposed. Boundary layer problems are accurately solved by a domain decomposition method. An effective iterative method for the solution of spectral systems is proposed. Suitable components for a multigrid method are presented.
[1] C. Canuto: Spectral methods and maximum principle, to appear in Math. Comp. MR 0930226
[2] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang: Spectral methods in fluid dynamics. Springer-Verlag, New York-Berlin-Heidelberg, 1988. MR 0917480
[3] J. Doerfer: Mehrgitterverfahren bei singulaeren Stoerungen. Master Thesis, Duesseldorf, 1986.
[4] J. Doerfer and K. Witsch: Stable second order discretization of singular perturbation problems using a hybrid technique. (to appear).
[5] D. Funaro: Computing with spectral matrices. (to appear).
[6] D. Funaro, A. Quarteroni and P. Zanolli: An iterative procedure with interface relaxation for domain decomposition methods. SIAM J. Num. Anal. 25 (1988). MR 0972451
[7] W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher, Stuttgart, 1986. MR 1600003 | Zbl 0609.65065
[8] W. Heinrichs: Line relaxation for spectral multigrid methods. J. Comp. Phys. 77 (1988), 166–182. MR 0954308 | Zbl 0649.65055
[9] W. Heinrichs: Multigrid methods for combined finite difference and Fourier problems. J. Comp. Phys. 78 (1988), 424–436. MR 0965660 | Zbl 0657.65118
[10] T. Meis, U. Markowitz: Numerische Behandlung partieller Differentialgleichungen. Springer-Verlag, Berlin-Heidelberg-New York, 1978. MR 0513829
[11] S.A. Orszag: Spectral methods in complex geometries. J. Comp. Phys. 37 (1980), 70–92. MR 0584322
[12] H. Yserentant: Die Mehrstellenformeln für den Laplaceoperator. Num. Math. 34 (1980), 171–187. MR 0566680
[13] T.A. Zang, Y.S. Wong and M.Y. Hussaini: Spectral multigrid methods for elliptic equations I. J. Comp. Phys. 48 (1982), 485–501. MR 0755459
[14] T.A. Zang, Y.S. Wong and M.Y. Hussaini: Spectral multigrid methods for elliptic equations II. J. Comp. Phys. 54 (1984), 489–507. MR 0755456
Partner of
EuDML logo