Full entry |
PDF
(1.5 MB)
Feedback

hemivariational inequalities; variational inequalities; abstract set-valued law in mechanics; star-shaped admissible sets

References:

[2] S. Adly, D. Goeleven, M. Théra: **Recession mappings and noncoercive variational inequalities**. (to appear). MR 1377476

[3] H. Attouch, Z. Chbani, A. Moudafi: **Recession operators and solvability of variational problems**. Preprint, Laboratoire d’Analyse Convexe, Université de Montpellier 1993.

[4] C. Baiocchi, G. Buttazzo, F. Gastaldi, F. Tomarelli: **General existence theorems for unilateral problems in continuum mechanics**. Arch. Rat. Mech. Anal. 100 (1988), no. 2, 149–180. MR 0913962

[5] H. Brézis, L. Nirenberg: **Characterizations of the ranges of some nonlinear operators and applications to boundary value problems**. Ann. Scuola Normale Superiore Pisa, Classe di Scienze Serie IV V (1978), no. 2, 225–235. MR 0513090

[6] F. E. Browder: **Nonlinear operators and nonlinear equations of evolution in Banach spaces**. Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc. XVIII (1976), no. 2. MR 0405188 | Zbl 0327.47022

[7] P. G. Ciarlet, P. Rabier: **Les équations de Von Karman**. Lecture Notes in Mathematics 836, Springer Verlag, 1980. MR 0595326

[8] P. G. Ciarlet, J. Nečas: **Unilateral problems in nonlinear three-dimensional elasticity**. Arch. Rational Mech. Anal. 87 (1985), 319–338. MR 0767504

[9] A. Cimetière: **Un problème de flambement Unilatéral en théorie des plaques**. Journal de Mécanique 19 (1980), no. 1, 183–202. MR 0571805

[10] F. H. Clarke: **Nonsmooth Analysis and Optimization**. Wiley, New York, 1984.

[11] J. Dieudonné: **Eléments d’Analyse**. Gauthier-Villars, 1968.

[12] G. Fichera: **Boundary value problems in elasticity with unilateral constraints**. Handbuch der Physik, Springer-verlag, Berlin-Heidelberg-New York VIa.2 (1972), 347–389.

[13] J. Frehse: **Capacity methods in the theory of partial differential equations**. Iber. d. Dt. Math.-Verein 84 (1982), 1–44. MR 0644068 | Zbl 0486.35002

[14] D. Goeleven: **On the solvability of noncoercive linear variational inequalities in separable Hilbert spaces**. Journal of Optimization Theory and Applications 79 (1993), no. 3, 493–511. MR 1255283 | Zbl 0798.49012

[15] D. Goeleven: **Noncoercive hemivariational inequality approach to constrained problems for star-shaped admissible sets**. FUNDP Research-Report, 1994.

[16] D. Goeleven, G. E. Stavroulakis, P. D. Panagiotopoulos: **Solvability theory for a class of hemivariational inequalities involving copositive plus matrices**. Applications in Robotics, Preprint 1995. MR 1422180

[17] H. N. Karamanlis, P. D. Panagiotopoulos: **The eigenvalue problems in hemivariational inequalities and its applications to composite plates**. Journal Mech. Behaviour of Materials, To appear.

[18] N. Kikuchi, J. T. Oden: **Contact problems in elasticity: A study of variational inequalities and finite element methods**. SIAM, Philadelphia, 1988. MR 0961258

[19] E. M. Landesman, A. C. Lazer: **Nonlinear perturbations of linear elliptic boundary value problems at resonance**. Journal of Mathematics and Mechanics 19 (1970), 609–623. MR 0267269

[20] J. L. Lions, G. Stampacchia: **Variational inequalities**. Comm. Pure Applied Math. XX (1967), 493–519. MR 0216344

[21] D. T. Luc, J-P. Penot: **Convergence of Asymptotic Directions**. Preprint Université de Pau, 1994.

[22] Z. Naniewicz: **Hemivariational inequality approach to constrained problems for starshaped admissible sets**. Journal of Optimization Theory and Applications 83 (1994), no. 1, 97–112. MR 1298859

[23] Z. Naniewicz: **On the pseudo-monotonocity of generalized gradients of nonconvex functions**. Applicable Analysis 47 (1992), 151–172. MR 1333952

[24] P. D. Panagiotopoulos: **Coercive and semicoercive hemivariational inequalities**. Nonlinear Analysis, Theory, Methods & Applications 16 (1991), no. 3, 209–231. MR 1091520 | Zbl 0733.49012

[25] P. D. Panagiotopoulos: **Inéquations Hémivariationnelles semi-coercives dans la théorie des plaques de Von Karman**. C. R. Acad. Sci. Paris 307 (1988), no. Série I, 735–738. MR 0972823 | Zbl 0653.73011

[26] P. D. Panagiotopoulos, G. E. Stravoulakis: **The delamination effect in laminated Von Kármán plates under unilateral boundary conditions. A variational-hemivariational inequality approach**. Journal of Elasticity 23 (1990), 69–96. MR 1065231

[27] P. D. Panagiotopoulos, G. E. Stravoulakis: **A variational-hemivariational inequality approach to the laminated plate theory under subdifferential boundary conditions**. Quarterly of Applied Mathematics XLVI (1988), no. 3, 409–430. MR 0963579

[28] P. D. Panagiotopoulos: **Semicoercive hemivariational inequalities, on the delamination of composite plates**. Quarterly of Applied Mathematics XLVII (1989), no. 4, 611–629. MR 1031680 | Zbl 0693.73007

[29] P. D. Panagiotopoulos: **Hemivariational inequalities and substationarity in the static theory of v. Kármán plates**. ZAMM, Z. Angew. Math. u. Mech. 65 (1985), no. 6, 219–229. MR 0801713

[30] P. D. Panagiotopoulos: **Hemivariational inequalities and their applications**. In: J. J. Moreau, P. D. Panagiotopoulos, G. Strang (eds), Topics in Nonsmooth Mechanics, Birkhäuser Verlag 1988. MR 0957088 | Zbl 0973.90060

[31] P. D. Panagiotopoulos: **Nonconvex superpotentials in the sense of F. H. Clarke and applications**. Mech. Res. Comm. 8 (1981), 335–340. MR 0639382

[32] P. D. Panagiotopoulos: **Nonconvex Energy Function, Hemivariational Inequalities and Substationarity Principles**. Acta Mech. 48 (1983), 160–183. MR 0715806

[33] P. D. Panagiotopoulos: **Hemivariational Inequalities, Applications in Mechanics and Engineering**. Springer Verlag Berlin Heidelberg, 1993. MR 1385670 | Zbl 0826.73002