Article
Keywords:
differential-algebraic problem; monotone sequences; quadratic convergence
Summary:
The method of quasilinearization is a procedure for obtaining approximate solutions of differential equations. In this paper, this technique is applied to a differential-algebraic problem. Under some natural assumptions, monotone sequences converge quadratically to a unique solution of our problem.
References:
                        
[1] J. Bahi, E. Griepentrog and J. C. Miellou: 
Parallel treatment of a class of differential-algebraic systems. SIAM J.  Numer. Anal. 33 (1996), 1969–1980. 
DOI 10.1137/S0036142993258105 | 
MR 1411858 
[2] R. Bellman, R. Kalaba: 
Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York, 1965. 
MR 0178571 
[3] Z. Jackiewicz, M. Kwapisz: 
Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J.  Numer. Anal. 33 (1996), 2303–2317. 
DOI 10.1137/S0036142992233098 | 
MR 1427465 
[5] T. Jankowski, M. Kwapisz: 
Convergence of numerical methods for systems of neutral functional-differential-algebraic eguations. Appl. Math. 40 (1995), 457–472. 
MR 1353973 
[6] M. Kwapisz: 
On solving systems of differential algebraic eguations. Appl. Math. 37 (1992), 257–264. 
MR 1180604 
[7] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala: 
Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985. 
MR 0855240